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1. Motivation

Let us first observe some remarkable properties of the closed interval [a, b]
of real line.

Theorem 1.1. (Bolzano–Weierstrass theorem) Every bounded sequence
of real numbers has a convergent subsequence.

Another version of this theorem is

Theorem 1.2. (Bolzano–Weierstrass theorem (rephrased)) Let X be
any closed bounded subset of the real line. Then any sequence (xn) of points
in X has a subsequence converging to a point of X.

Note that above property of X does not hold if X fails to be closed or
fails to be bounded (why?).
Now look at the another important property of [a, b].

Theorem 1.3. (Heine–Borel theorem) Every covering of a closed in-
terval [a, b] — or more generally of a closed bounded set X ⊂ R — by a
collection of open sets has a finite subcovering.

These theorems are not only interesting but they are extremely useful for
the purpose of applications. We also know that every real valued continuous
function on a closed and bounded interval [a, b] is bounded and attains its
supremum and infemum on [a, b].Not only that continuity of the function is
strengthened to uniform continuity. Naturally, the question is that for what
property of this closed and bounded intervals posses? Now our goal is to
find out the generalization of the above results in arbitrary metric spaces.

2. Basic definitions and Results

Let (X, d) be a metric space.

Definition 2.1. (Cover(open Cover) or Covering(open covering))
A cover(open cover) or covering(open covering) of X is a collection of sets
(open sets) whose union is X. Let X be a nonempty set and A ⊂ X. A
collection U of subsets of X is called a cover or covering of the set A if
A ⊂

⋃
U.
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Definition 2.2. (subcover) A subcollection U0 of U is called a subcover
or a subcovering of U for A if U0 is also a cover of A. If the subcover U0

consits finite number of elements then it is called finite subcover.

Open covers of subsets of the Euclidean spaces Rn can always be reduced
to countable ones, as the next classical result of E.Lindelöf shows.

Lemma 2.3. (Lindelöf) Every open cover of a subset of Rn can be reduced
to an at-most countable subcover.

Proof. We call a point a = (a1, a2, ..., an) ∈ Rn rational, if each component
ai is a rational number. Let A ⊂ Rn and {Ui}i∈J is an infinite open cover
of A. Now, for each x ∈ A, there exists ix ∈ J such that x ∈ Uix . Now
we can choose a rational point ax ∈ Rn and a positive rational numberrx
such that x ∈ B(ax, rx) ⊂ Uix . Then the collection {B(ax, rx) : x ∈ A} is
an at-most countable open cover of A. Since each B(ax, rx) is a subset of
some Ui, therefore there exists an at-most countable subcover of {Ui}i∈J for
A. �

Now we are ready to define compactness.

Definition 2.4. (Compact metric space) Let (X, d) be a metric space.
A subset A of X is said to be compact if every open cover of A can be
reduced to a finite subcover. If X is itself a compact set, then (X,d) is
referred to as a compact metric space.

We can rephrase compactness in terms of closed sets by making the fol-
lowing observation: If U is an open covering of X, then the collection F of
complements of sets in U is a collection of closed sets whose intersection
is empty (why?); and conversely, if F is a collection of closed sets whose
intersection is empty, then the collection U of complements of sets in F is
an open covering. Thus, a space X is compact if and only if every collection
of closed sets with an empty intersection has a finite subcollection whose
intersection is also empty. Or, passing to the contrapositive, we can put it
another way by making the following definition:

Definition 2.5. (Finite Intersection Property) A collection F of sets
is said to have the finite intersection property (f.i.p., for short) if every finite
subcollection of F has a nonempty intersection.

From the above discussion we have shown that

Theorem 2.6. A metric space X is compact if and only if every collection
F of closed sets in X with the finite intersection property has a nonempty
intersection.

Note. The above theorem shows that in a compact metric space (X, d)
if F1 ⊇ F2 ⊇ .... is a descending sequence of nonempty closed sets, then⋂∞
n=1 Fn 6= φ and therefore by cantor’s intersection theorem, (X, d) is com-

plete.
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It is therefore natural to ask, whether complete metric space is compact or
not. In general the answer is no. As you know that R is complete but not
compact. After some time we will return to the topic again.
Before we discuss further we will give some example of compact metric
spaces.

Example. Every finite subset of any metric space is always compact.

Note that no infinite subset of a discrete metric space is compact, as single
tone sets are open.

Example. The real line R is not compact, as the open cover {(−n, n) : n ∈
N} of R have no finite subcover.

Example. Let (an) be a sequence in a metric space X, converging to a
pointa in X. Let A denote the range of the sequence and B = A

⋃
{a}, then

B is a compact subset of X. In fact, let F be any open cover of B, then
there exists U ∈ F such that a ∈ U . Since U is an open set and a is the
limit of the sequence, hence all but finitely elements of B is in U and the
rest of the elements of B must be in finite number of elements of F and they
together with U form a finite subcover of B.

Now we will show another interesting feature of compact metric space.

Theorem 2.7. Every closed subset of a compact metric space is compact.

Proof. Let A be a closed subset of a compact metric space (X, d) and F =
{Fi : i ∈ J} be an open cover of A. Clearly {Fi : i ∈ J}∪ (X − A) is an
open cover of X. By the compactness of X, there exists F1, F2, .....Fn ∈ F
for some n ∈ N such that X =

⋃n
i=1 Fi ∪ (X − A). Clearly {F1, F2, .....Fn}

covers A and hence A is compact. �

Now we will characterize the compact subsets of a metric space.

Theorem 2.8. A compact subset of a metric space (x, d) is closed and
bounded.

Proof. Let Y be a compact subset of a metric space (X, d). To show Y to
be closed we only have to show that any point of Y c is not a limit point of
Y .
So, let x0 ∈ Y d, and for each y ∈ Y, d(y, x0) = ry(say). Then U = {B(y,

ry
2 ) :

y ∈ Y } is an open cover of Y . As Y is compact U has an finite subcover and
hence there exists {y1, y2, ...., yn} ⊆ Y } such that Y ⊆

⋃n
i=1B(yi,

ryi
2 ). Let

r = min(ry1 , ry2 , ...., ryn) > 0. Now we claim that B(x0,
r
2) ∩ Y = φ. If not,

let x ∈ B(x0,
r
2)∩Y . As, Y ⊆

⋃n
i=1B(yi,

ryi
2 ), therefore say x ∈ B(yi,

ryi
2 )⇒

d(x, yi) <
ryi
2 ⇒ d(x, x0) ≥ r

2 . Hence x /∈ B(x0,
r
2), a contradiction, which

proves that x0 /∈ Y d. Thus Y is closed.
Now we will show that Y is bounded. Since Y ⊆

⋃
x∈Y B(x, 1), there exists

a finite number ofpoints x1, x2, ...., xn of Y ( as Y is compact) such that
Y ⊆

⋃n
i=1B(xi, 1).LetM = max {d(xi, xj) : i, j = 1, 2, .., n.Ifx,y ∈ Y ,
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then choose i and j such that x ∈ B(xi, 1) and y ∈ B(xj , 1).Therefore,
d(x, y) ≤ d(x, xi) + d(xi, xj) + d(xj , y) < M + 2 <∞, so Y is bounded. �

From the above two theorems we can conclude that, in a compact metric
space (X, d), a subset A of X is compact iff it is closed in X.
Note: Converse of the above theorem need not be true. If we consider a
discrete metric spaceX, d), then any infinite subset A of X is closed and
bounded but not compact(why?).
On the other hand, if a metric space (X, d) contains a noncompact closed
subset A, then all the supersets of A are noncompact. As for an example N is
a noncompact closed subsets of R and hence any superset of N if noncompact
and in particular Q, R are not compact.
To move further, we have to familiar with some other important notions.

Definition 2.9. (Sequentially compact) A metric space X is said to be
sequentially compact if every sequence (xn) of points in X has a convergent
subsequence.

Note that, this abstracts the Bolzano–Weierstrass property; indeed, the
Bolzano–Weierstrass theorem states that closed bounded subsets of the real
line are sequentially compact.

Definition 2.10. (Total boundedness) A subset E of a metric space X
is said to be toatally bounded (or precompact) if for every ε > 0, there are
x1, x2, ..., xn in X such that E ⊂ B(x1, ε)

⋃
B(x2, ε)

⋃
...
⋃
B(xn, ε).

Remark 2.11. If E is totally bounded, then we can find such x1, x2, ..., xn
in E itself.

Remark 2.12. Every totally bounded set is bounded (why?), but a bounded
set need not be totally bounded. For example, let X = R with the metric d
given by d(x, y) = min{1, |x− y|} for x, y ∈ R. Then X is clearly bounded
but not totally bounded since for 0 < ε < 1 and for any x1, x2, ..., xn ∈ R,
1 + x1 + x2 + ...+ xn /∈ Bd(x1, ε)

⋃
Bd(x2, ε)

⋃
...
⋃
Bd(xn, ε).

Remark 2.13. Every subset of a totally bounded set is totally bounded
and so is its closure.(why?)

The next result characterizes the compact sets in metric spaces and gives
an indication of the usefulness of the compact sets.

Theorem 2.14. For a subset A of a metric space (X, d) the following state-
ments are equivalent:

(1) A is a Compact set.
(2) Every infinite subset of A has an accumulation point in A.
(3) every sequence in A has a subseqence which converges to a point of

A
(4) A is complete and totally bounded.
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Proof. (1) =⇒ (2) Let S be an infinite subset of a compact set A. Let
if possible S has no accumulation point in A. Then, for every x ∈ A
there exists some rx > 0 such that B(x, rx) ∩ (S \ {x}) = φ. Therefore,
B(x, rx) ∩ S ⊆ {x}. Clearly, A ⊆

⋃
x∈AB(x, rx) holds, and, in view of com-

pactness of A, there exist x1, x2, ..., xn ∈ A such that A ⊆
⋃n
i=1B(xi, rxi).

But then S = A ∩ S ⊆
⋃n
i=1[B(xi, rxi) ∩ S] ⊆ {x1, x2, ..., xn}, shows that S

must be a finite set, a contradiction. hence the proof.
(2) =⇒ (3) Let (xn) be a sequence of A. If the range of the sequence is fi-
nite, then there is nothing to show- as it must have a constant subsequence.
Now, if range of (xn) is infinite, then there exist a subsequence (yn) of (xn)
such that yn 6= ym for n 6= m. Now the set {y1, y2, ....} is an infinite subset
of A, and by our hypothesis it has an accumulation point in A, say x. We
can assume that yn 6= x for each n; if y−k = n, then replace (yn) by (yn+k).
Choose m1 with d(ym1 , x) < 1 ( such m1 exists as x is an accumulation
point). Now, inductively, if m1 < m2 < ... < mn have been selected, choose
mn+1 such that d(ymn+1 , x) < min{ 1

n+1 , d(y1, x), d(y2, x), ..., d(ym, x)}. Clearly,

mn+1 > mn must hold. This shows that (ymn) is a subsequence of (yn), and
hence, a subsequence of (xn). In view of d(ym, x) < 1

n , it follows that
limymn = x, as required.
(3) =⇒ (4) Suppose that every sequence of A has a convergent subsequence.
Since a A Cauchy sequence having a convergent subsequence is itself con-
vergent, hence A is complete.
To show that A is totally bounded, let if possible A is not totally bounded.
Then there is some ε > 0 such that A can not by cover by finite number
of open balls of radius ε. Let x1 ∈ A. Then we can find x2 in A such that
x2 /∈ B(x1, ε). Again, we have x3 ∈ A so that x3 /∈ B(x1, ε)∪B(x2, ε). In this
way after nth choice we have xn+1)∈A such that xn+1 /∈ B(x1, ε)∪B(x2, ε)∪
...(xn, ε), and this is true for any n ∈ N. Then d(xn, xm) ≥ ε,∀n,m =
1, 2, ...., so that (xn) cannot have a convergent subsequence, cotradictory to
our hypothesis. Hence A is totally bounded.
(3) =⇒ (4) Let if possible A is not compact. Consider an open cover F
of A without any finite subcover (such open cover exists as A is not com-
pact) Since A is totally bounded we can cover A by finitely many open
balls of radius 1. Then for atleat one of these open balls of radius 1, say
B0 = B(x0, 1), there is no finite subcover from the given open cover F. As
B0 ⊂ A, then B0 is totally bounded. AS before, there is some x1 ∈ B0

such that B1 = B(x1,
1
2) has no finite subcover from the given open cover

F. In this way, proceeding inductively we have a sequence (xn) in A with
xn+1 ∈ Bn = B(xn,

1
2n ) such that Bn has no finite subcover from the given

open cover F. Since d(xn, xm) ≤
∑m−1

j=n d(xj , xj+1) ≤
∑m−1

j=n
1
2j
≤ 1

2n−1 for

all m > n, we see that (xn) is a Cauchy sequence of A. As, A is complete,
there exists x ∈ A such that xn → x. Now there is one open set O in F, so
that x ∈ O. Let r > 0 be such that B = B(X, r) ⊂ O and choose n so large
that d(x, xn) < r

2 where r > 1
2n−1 . Now Ifb ∈ A and d(xn, b) <

1
2n , then
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d(x, b) < r, so that Bn ⊂ B ⊂ O. Thus O is a finite subcover of Bn in the
given open cover F, in contradiction to our construction of Bn. Hence A is
compact. �

Corollary 2.15. (1) (Heine-Borel)A subset of a Euclidean space is com-
pact if and only if it is closed and bounded.

(2) (Bolzano-Weierstrass)Every bounded sequence in a Euclidean space
has a convergent subsequence.

Corollary 2.16. Let X be a complete metric space and Y ⊆ X.
(1) Y is compact if and only if Y is closed and totally bounded.
(2) Ȳ is compact if and only if Y is totally bounded

We also have the following easy fact:

Theorem 2.17. Every totally bounded metric space (and in particular every
compact metric space) is separable.

Proof. If X is totally bounded, then there exists for each n a finite subset
An ⊆ X such that, for every x ∈ X, d(x,An) < 1

n . Now let A =
⋃∞
n=1An.

The set A is either finite or countably infinite (why?); and for each x ∈ X
we have d(x,A) ≤ d(x,An) < 1

n , hence d(x,A) = 0, hence x ∈ Ā (why?).
This proves that A is dense in X. �

Remark 2.18. Intuitively, a separable space is one that is “well approxi-
mated by a countable subset”, while a compact space is one that is “well
approximated by a finite subset”.

Next we will give some simple results which will show how compact sets
reproduce many other compact sets.

Theorem 2.19. In a metric space (X, d),
(1) union of finite number of compact sets is compact.
(2) intersection of any collection of compact sets is compact
(3) sum of two compact sets is compact

Proof. Proof of the above results are very simple and left to the students as
exercise. �

Remark 2.20. An infinite union of compact sets need not even be closed
(give an example!); and even when it is closed, it need not be compact (give
another example!).

3. Continuous functions on compact metric spaces

From the definition of continuity, it is clear that inverse image of a closed
set is closed but image of a closed set in geneal need not be closed. However,
for some special closed sets namely, the compact ones — the direct image is
closed and indeed is compact:



COMPACTNESS OF METRIC SPACES 7

Proposition 3.1. (Continuous image of a compact space) Let X and
Y be metric spaces, with X compact, and let f : X → Y be a continuous
map that is surjective (i.e. the image f(X) equals all of Y ). Then Y is
compact.

Proof. FirstProof : Let (Uα)α∈I be an open covering of Y . Then the sets
f−1(Uα) are open for each α ∈ I, as f is continuous. Hence, f−1(Uα)α∈I
form an open covering of X (as f is surjective). Since X is compact, there
exists a finite subset J ⊆ I such that f−1(Uα)α∈J still forms a covering of
X. But then (Uα)α∈J forms a covering of Y .
SecondProof : Consider a sequence (yn) of elements of Y . Because f is
surjective, we can choose a sequence (xn) of points in X such that f(xn) =
yn. Since X is compact, there exists a subsequence (xnk

) that converges
to some point a ∈ X. But since f is continuous at a, the sequence (ynk

)
converges to f(a). This proves that Y is sequentially compact, hence com-
pact. �

This can be formulated precisely in several slightly different, but equiva-
lent, ways:
(1) Let X and Y be metric spaces, with X compact, and let f : X → Y be

a continuous map. Then f(X) is a compact subset of Y .
(2) Let X and Y be metric spaces, and let f : X → Y be a continuous map.

If A is a compact subset of X, then f(A) is a compact subset of Y .
You should make sure you understand why these three formulations are
equivalent.
It follows easily from the above Proposition that a continuous real-valued
function on a compact metric space is automatically bounded, and further-
more that the maximum and minimum values are attained:

Corollary 3.2. Let X be a compact metric space, and let f : X → R be
continuous. Then f(X) is bounded, and there exist points a, b ∈ X such that
f(a) = infx∈Xf(x) and f(b) = supx∈Xf(x).

Proof. As X is compact, f(X) is a compact subset of R, hence closed and
bounded. Now, any bounded set A ⊆ R has a least upper bound supA and
a greatest lower bound infA, and these two points belong to the Ā. But
applying this to A = f(X), which is closed, we conclude that supf(X) and
inff(X) belong to f(X) itself, which is exactly what is being claimed. �

Remark 3.3. This result can fail if X is noncompact, for instance if X = R:
a continuous real-valued function on R need not be bounded; and even if it
is bounded, its supremum and infimum need not be attained. You should
give examples to illustrate both these points.
In fact, you will learn in due time that a metric space is compact if and only
if every continuous real-valued function on it is bounded.

We begin by recalling that if (X, dX) and (Y, dY ) are two metric spaces,
then a mapping f : X → Y is continuous at the point x ∈ X if, for each
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ε > 0, there exists > 0 (depending of course on ε) such that, for all x ∈
X, dX(x, x) <=⇒ dY (f(x), f(x)) < ε. In particular, a mapping f : X → Y
is continuous if it is continuous at every point x ∈ X, i.e. if, for each ε > 0
and each x ∈ X, there exists > 0 (depending onε and x) such that, for all
x ∈ X, dX(x, x) <=⇒ dY (f(x), f(x)) < ε. Note that here can depend on x
as well as on ε. We now make a new definition:

Definition 3.4. A mapping f : X → Y is uniformly continuous if, for
each ε > 0, there exists δ > 0 (depending of course onε) such that, for all
x, x ∈ X, dX(x, x) < δ implies dY (f(x), f(x)) < ε. The point is that, in
uniform continuity, δ can still depend on ε (in general it has to) but is not
allowed to depend on x.
To see that uniform continuity is truly a stronger property than continuity,
consider the map f : R → R defined by f(x) = x2. It is continuous but
not uniformly continuous. The existence on R of a function that is contin-
uous but not uniformly continuous is directly linked to the fact that R is
noncompact. In particular, we have:

Proposition 3.5. Let f be a continuous mapping of a compact metric space
X into a metric space Y . Then f is uniformly continuous.

Proof. Given ε > 0 and x ∈ X, there exists a δx > 0 such that dX(x, x) < δx
implies dY (f(x), f(x)) < ε

2 . Now let Ux = B(x, δx2 ), the open ball of center

x and radius 1
2δx. he collection Uxx∈X is an open covering of X, so it has

a finite subcovering {Ux1 , ..., Uxn}. Let δ = 1
2minδx1 , ..., δx1 .Clearlyδ > 0.

Now, given two points y, z ∈ X such that dX(y, z) < δ, the point y must
belong to some Uxi and hence dX(y, xi) <

1
2δxi . But then dX(z, xi) ≤

dX(z, y) + dX(y, xi) < δ + 1
2δxi ≤ δxi .

So both y and z lie at a distance less than δxi from the point xi, which implies
(by definition of xi) that dY (f(y), f(xi)) <

ε
2 and dY (f(z), f(xi)) <

ε
2 . Hence

dY (f(y), f(z)) < ε, which shows that f is uniformly continuous. �

Remark 3.6. It is natural to ask whether the converse to this theorem is
true: that is, if X is a metric space such that every continuous real-valued
function on X is uniformly continuous, is X necessarily compact? The answer
is no: for instance, if X is any discrete metric space, then every real-valued
function on X is automatically both continuous and uniformly continuous;
but a discrete metric space is compact if and only if it is finite.

Eercises:
(1) Determine whether the following subsets of R2 are compact:

(a) A = (Q ∩ [0, 1])× [0, 1]
(b) B = {(x, y) ∈ R2 : x = 0}
(c) C = ({0} ∪ { 1n : n ∈ N})× [0, 1]

(d) D = {( 1
n ,

n−1
n ) : n ∈ N}

(2) Let A be closed and B a compact set in a metric space (X, d). Show
that A ∩B and Bd are compact in X.
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(3) If every proper closed subset of a metric space (X, d) is finite, show that
X is compact.

(4) Let A1 be a compact subset of a metric space (X1, d1) and A2 be a
compact subset of a metric space (X2, d2). Show that A1 ×A2 is com-
pact in X1 ×X2 (with product metric).

(5) Show that every totally bounded subset of a metric space is bounded.

(6) Consider the metric space l2, with usual lp metric d and the subset
A = {x ∈ l2 : d(x, Ō) = 1} ⊂ l2, where Ō is the zero sequence. Show
that A is a bounded subset of l2 but not totally bounded.

(7) Show that a subset of a totally bounded set of a metric space is totally
bounded.

(8) Prove that in R, a set A is bounded if and only if it is totally bounded.

(9) Show by an example that boundedness and total boundedness are not
topological properties.

(10) Prove that a subset A of a metric space is X is totally bounded iff every
sequence in A has a Cauchy subsequence.

(11) Let X be a nonempty compact subset of R2. Show that there exists
x0 ∈ X such that d(x0, 0) = supx∈Xd(x, 0)

(12) Show that A = {f ∈ C[0, 1] : f(0) = 1} is a closed subset of C[0, 1]
(13) Let (X, dX) and (Y, dY ) be metric spaces, where X is a compact space,

and f : X → Y be a continuous bijection. If f−1 : Y → X is also
continuous, then show that f is a homeomorphism.

(14) Given two nonempty disjoint sets, A,B in a metric space (X, d) with
A compact and B clised, show that d(A,B) > 0.

(15) Let A,B be subsets of a metric space (X, d) with B compact. Prove
that d(A,B) = 0 iff Ā ∩B 6= φ.

(16) Let A be a compact subset of a metric space (X, d). Prove that there
exist x, y ∈ A such that d(x, y) = diamA.

(17) Let f be a continuous real valued function on [a, b]. Prove that graph
of f is a compact subset of R2.

(18) Prove that a metric space (X, d) is compact iff every real-valued con-
tinuous function on X is bounded.

(19) Let X and Y be two metric spaces. Show that a function f : X → Y
is continuous iff the restriction of fto every compact subset of X is
continuous.

(20) Show that the closed unit ball of C[0, 1] is not compact.
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