
Quantum Theory of Scattering

Topics already covered: Laboratory and centre of mass frames, basic assumptions, probability densi-

ties for incident and scattered waves, scattering amplitude, differential and total scattering cross-section,

expansion formula for plane waves, partial wave analysis, optical theorem

Topic 1: Phase Shift in Scattering Process In presence of a target represented by a spherically sym-

metric potential, V (r), the radial part of the Schrödinger equation for a particle of mass m and energy E is

given by, [
d2

dr2
+

2

r

d

dr
+

{
k2 − u(r)− l(l + 1)

r2

}]
Rkl(r) = 0 (1)

where, k2 = 2mE
~2 and, u(r) = 2mV (r)

~2 . Putting Rkl(r) = Qkl(r)
r in equation(1), we find[

d2

dr2
+

{
k2 − l(l + 1)

r2

}]
Pkl(r) = 0 (2)

and also for u(r) = 0, we consider Rkl = Pkl(r)
r and therefore equation(1) can be written as[

d2

dr2
+

{
k2 − u(r)− l(l + 1)

r2

}]
Qkl(r) = 0 (3)

Subtracting equation(3) from equation(2) and integrating within the limit 0 to infinity, we find∫ ∞
0

{
P
d2Q

dr2
−Qd

2P

dr2

}
dr −

∫ ∞
0

Pu(r)Qdr = 0

⇒
[
P
dQ

dr
−QdP

dr

]∞
r=0

=

∫ ∞
0

Pu(r)Q dr

(4)

Now Pkl and Qkl for r → 0 is a finite quantity. For the shake of mathematical simplicity, we can set it as

zero. For r →∞, Pkl =
sin(kr− lπ2 )

k and Qkl(r) = cl
sin(kr− lπ2 +δl)

k so that,

Pkl
dQkl
dr
−Qkl

dPkl
dr

=
cl
k

[
sin

(
kr − lπ

2

)
cos

(
kr − lπ

2
+ δl

)
− sin

(
kr − lπ

2
+ δl

)
cos

(
kr − lπ

2

)]
=

cl
k

sin (−δl)

which implies

sin δl = − k
cl

∫ ∞
0

Pkl(r)

[
2m

~2
V (r)

]
Qkl(r)dr (5)

where, δl represents the phase shift between the incident [Pkl(r)] and scattered waves [Qkl(r)cl
] due to the

presence of the scaterrer or the target mimicked by the potential V (r). Now if (i) The projectile or the

incident wave is very fast so that the limit of interaction is very small and/or (ii) The range of the potential

is short, one can easily replace the scattered wave function by the incident wave and thus the phase shift is

given by,

sin δl = −k
∫ ∞
0

u(r)[rjl(kr)]
2dr (6)

where, we have considered Pkl(r) = Qkl(r)
cl

= rjl(kr); jl(kr) being the spherical Bessel function.
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Topic 2: The Born Approximation We begin with a time independent formation of scattering process

and we assume that the Hamiltonian can be written as,

H = H0 + V =
p2

2m
+ V

In absence of the scatterer, V should be zero and the energy eigen state would just be free particle state

designated by |p〉. The presence of V causes the energy eigenstate to be different from a free particle state.

However, if the scattering process is to be elastic i.e. no change in energy, we are interested in obtaining a

solution of a full Hamiltonian Schrödinger equation with the same energy eigen ket of H0 so that,

H0|φ〉 = E|φ〉 (7)

and we want to solve the basic Schrödinger equation,

(H0 + V )|ψ〉 = E|ψ〉 (8)

Both H0 and (H0 + V ) execute continuous energy spectrum i.e. a free particle having energy E. We look

for a solution of equation(8) such that for V → 0 we find |ψ〉 → |φ〉 where |ψ〉 is the solution of the free

particle with the same energy eigenvalue. The desired solution is,

|ψ〉 =
1

E −H0
V |ψ〉+ |φ〉 (9)

But there is a problem in equation which arises because of the singular nature of the 1
E−H0

operator. To

avoid this singularity, the solution of equation(8), the solution is done by making the energy slightly complex,

i.e.

|ψ±〉 =
1

E −H0 ± iε
V |ψ±〉+ |φ〉 (10)

This equation is termed as Lippman Schrödinger integral equation. This is a Ket equation independent of

particle representation. Let us now confine ourselves to the position basis by multiplying 〈~r| from the left,

〈~r|ψ±〉 = 〈~r|φ〉+

〈
~r

∣∣∣∣ 1

E −H0 ± iε
V

∣∣∣∣ψ±〉 (11)

Now using the completeness theorem,
∫
|~r〉〈~r|d3~r = 1, we have

〈~r|ψ±〉 = 〈~r|φ〉+

∫
d3~r

′
〈
~r

∣∣∣∣ 1

E −H0 ± iε

∣∣∣∣~r′〉 〈~r′ |V |ψ±〉 (12)

This is an integral equation of scattering because the unknown Ket |ψ±〉 appears under the integral sign.

Now if |φ〉 stands for a plane wave with momentum ~p, we can write,

〈~r|φ〉 = φ(r) =
1

(2π~)3/2
ei
~p.~r
~ and

〈
~r

∣∣∣∣ 1

E −H0 ± iε

∣∣∣∣~r′〉 = −2m

~2

[
e±ik|~r−~r

′ |

4π|~r − ~r′ |

]
<see Appendix>

so that

〈~r|ψ±〉 = 〈~r|φ〉 − 2m

~2

∫
d3~r

′ e±ik|~r−~r
′

4π|~r − ~r′ |
〈~r′|V |ψ±〉 (13)
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Now note that

〈~r′ |V |ψ+〉 =

∫
〈~r′ |V |~r′′〉〈~r′′ |ψ+〉 d3~r′′ =

∫
V (~r

′′
)〈~r′′ |ψ+〉δ(~r − ~r′′) d3~r′′ = V (~r

′
)ψ+(~r

′
)

Thus,

〈~r′ |ψ+〉 = 〈~r|φ〉 −
∫

d3~r
′ eik|~r−~r

′ |

4π|~r − ~r′ |
v(~r

′
)ψ+(~r

′
) (14)

where, v(~r
′
) = 2mV (~r

′
)

~2 . Now let us assume that the detector is placed far away from the scatterer so that

|~r − ~r′ | ' |~r| i.e. |~r| >> |~r′ | so that

k|~r − ~r′ | = k
√
r2 + (r′)2 − 2~r.~r′ = kr

√
1 +

(
r′

r

)2

− 2
~r.~r′

r2
' kr

[
1− 2

~r.~r
′

r2

]1/2

Expanding the binomial series and retaining upto the 2nd term, we get

k|~r − ~r′ | ' kr

[
1− ~r.~r

′

r2

]
= kr − kr̂.~r′ = kr − ~k′ .~r′ [∵ ~k

′
= kr̂]

Thus,

〈~r|ψ+〉 = 〈~r|φ〉 − 1

4π

eikr

r

∫
d3~r

′
e−i

~k
′
.~r
′
v(~r

′
)ψ+(~r

′
)

⇒ ψ+(~r) = φ(~r) +
eikr

r

[
− 1

4π

∫
d3~r

′
e−i

~k
′
.~r
′
v(~r

′
)ψ+(~r

′
)

]
(15)

Comparing equation (15) with the scattering equation,

ψ(~r)
r→∞−−−→ φ(~r) + f(θ)

eikr

r

We can write the expression for the scattering amplitude as,

fk(θ) = − 1

4π

∫
d3~r

′
e−i

~k
′
.~r
′
v(~r

′
)ψ+(~r

′
) (16)

Using the Born approximation, one can replace the scattered wave function by the incident wave so that

the scattering amplitude becomes,

fk(θ) = − 1

4π

∫
d3~r

′
e−i

~k
′
.~r
′
u(~r

′
) ei

~k.~r
′

= − 2m

4π~2

∫
d3~r

′
e−i~q.~r

′
V (~r

′
)

where, ~q = ~k
′ − ~k is defined as the momentum transfer during collision process. Further expressing d3~r

′
=

r
′2dr

′
sin θdθdφ (where 0 ≤ r

′ ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) and perforimg the integration over θ and φ

co-ordinates, we find

fk(θ) = −m
~2

∫ ∞
r=0

∫ π

θ=0
r2 dr eiq cos θ V (r) sin θ dθ = −m

~2

∫ ∞
r=0

r2
[
e−iqr − eiqr

iqr

]
V (r)dr

⇒ fk(θ) =
2m

q~2

∫ ∞
r=0

r V (r) sin qr dr (17)
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Appendix〈
~r

∣∣∣∣ 1

E −H0 ± iε

∣∣∣∣~r′〉 =

∫ ∫
d3~p

′
d3~p

′′〈~r|~p′〉
〈
~p
′
∣∣∣∣ 1

E −H0 ± iε

∣∣∣∣ ~p′′〉 〈~p′′ |~r′〉
=

1

(2π~)3

∫ ∫
d3~p

′
d3~p

′′
〈
~p
′
∣∣∣∣ 1

E −H0 ± iε

∣∣∣∣ ~p′′〉 e i~ (~p′ .~r′−~p′′ .~r′ )
Now since,

〈
~p
′
∣∣∣ 1
E−H0±iε

∣∣∣ ~p′′〉 = 1

E− (p
′′
)2

2m
±iε
〈~p′ |~p′′〉 = 1

E− (p
′′
)2

2m
±iε

δ(~p
′′ − ~p′)

〈
~r

∣∣∣∣ 1

E −H0 ± iε

∣∣∣∣~r′〉 =
1

(2π~)3

∫
d3~p

′
e
i
~ ~p
′
.(~r−~r′ )

[
1

E − (p′ )2

2m − iε

]

Putting E = ~2k2
2m , ~p

′

~ = κ, d3~p
′

= (p
′
)2 dp

′
sin θ dθ dφ and integrating over the angle φ we find〈

~r

∣∣∣∣ 1

E −H0 ± iε

∣∣∣∣~r′〉 =
m

2π2~2

∫ ∞
κ=0

κ2

k2 − κ2 ± iε
dκ

∫ π

θ=0
eiκ|~r−~r

′ | cos θ sin θ dθ

=
m

2π2~2

∫ ∞
κ=0

κ2

k2 − κ2 ± iε
dκ

∫ +1

z=−1
eiκ|~r−~r

′ |z dz

=
m

π2~2

∫ ∞
κ=0

κ sin(κ|~r − ~r′ |)
k2 − κ2 ± iε

dκ

= −2m

~2

[
e±ik|~r−~r

′ |

4π|~r − ~r′ |

]

The integration over κ can be done using the standard method of complex contour integration.

Assignment

1. Using partial wave analysis, show that for a beam of low energy particles scattered by a rigid sphere,

the scattering cross-section is four times the geometrical cross-section of the sphere.

2. Using Born approximation, find the scattering amplitude and total scattering cross-section for scat-

tering of a particle of mass m by the following potential:

(a) Square well potential: V (r) = −V0 for r < a and 0 elsewhere

(b) Exponential potential: V (r) = −V0 exp
[
− r
a

]
(c) Pure/Screened Coulomb potential: V (r) = −V0 e

−µr

r

(d) Gaussian potential: V (r) = −V0 exp
[
−
(
r
a

)2]
(e) V (r) = −V0r2 exp

[
−
(
r
a

)2]
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