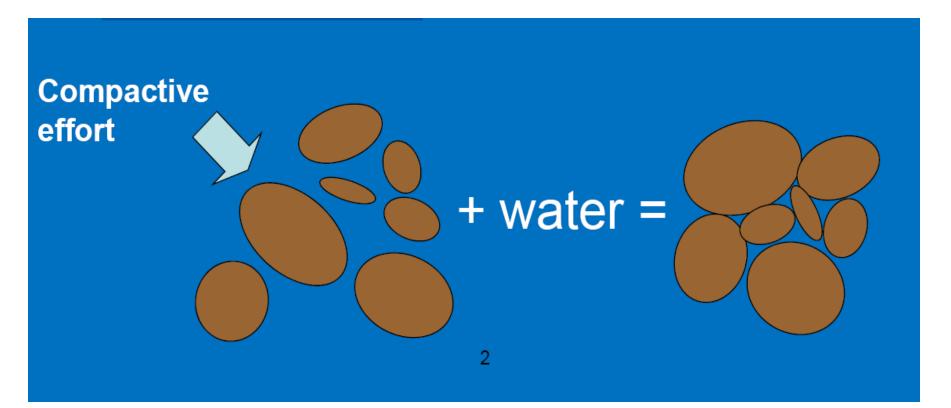
MECHANICAL MODIFICATION


COMPACTION

Dr. Supia Khatun Department of Civil Engg. Aliah University Newtown Campus Kolkata

What is compaction?

A simple ground improvement technique, where the soil is densified through external compactive effort.

Advantages of Compaction

- 1.Increases shear strength
- 2.Reduces compressibility
- 3.Reduces permeability
- 4.Reduces liquefaction potential
- 5.Controls swelling and shrinking
- 6. Prolongs durability

Strategies for compaction process are

•In the case of constructed fills, specify placement conditions

(water content, density, depth of layers, etc.)

•Select appropriate equipment (roller compactor, tamping) and

method of operation (number of passes, patterns of tamping,etc.).

•Set up adequate control procedures (type and number of tests, statistical evaluation,etc.).

Detail	Standard compaction	Modified compaction
Mold volume, cm ³	1000	1000
Diameter,mm	105	105
Height,mm	115.5	115.5
Rammer diam,mm	50	50
Drop,mm	300	450
Mass,Kg	2.7	4.9
Number of blows	3	5
Blows /layer	25	25
Energy input,KJ/m ³	596	2703

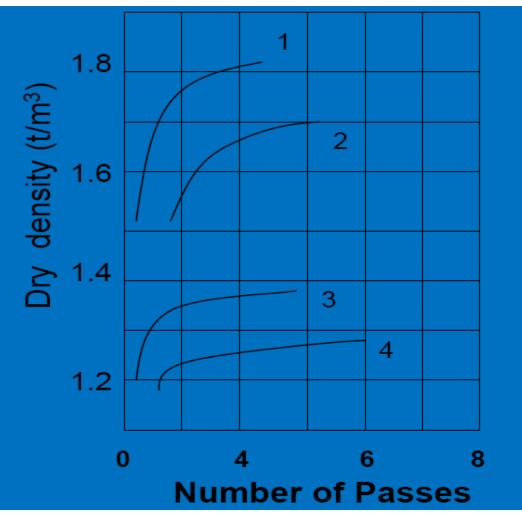
Laboratory Compaction Test

 to obtain the compaction curve and define the optimum water content and maximum dry density for a specific compactive effort.

hammer

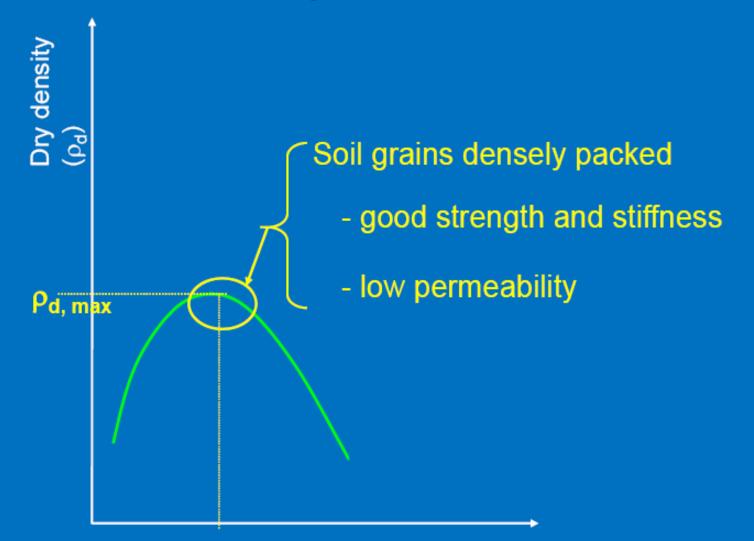
Standard Proctor:

- 3 layers
- 25 blows per layer
 2.7 kg hammer
- 300 mm drop



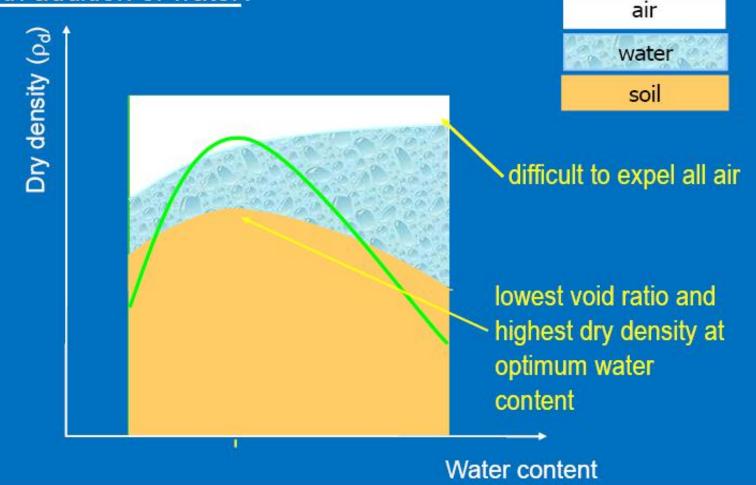
Modified Proctor:

- 5 layers
- 25 blows per layer
- 4.9 kg hammer
- 450 mm drop


Operational aspects of shallow compaction:

Operating frequency Number of passes Depth of layers.

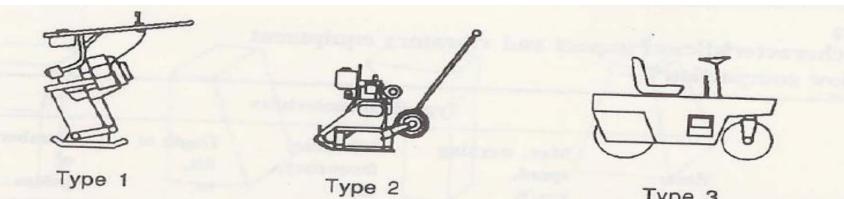
Relationship between number of passes of a roller and the density obtained.


Compaction Curve

optimum water content 7 Water content

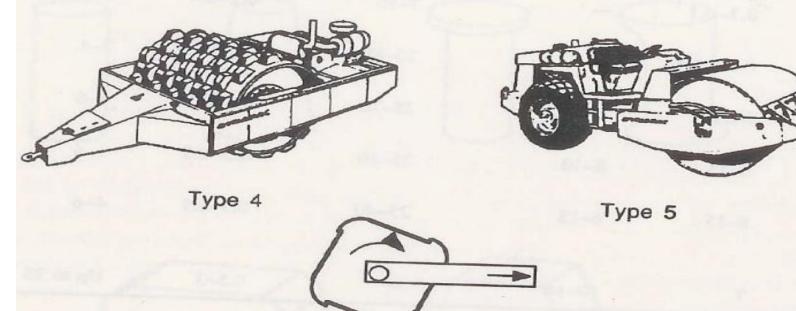
Compaction Curve

What happens to the relative quantities of the three phases with addition of water?

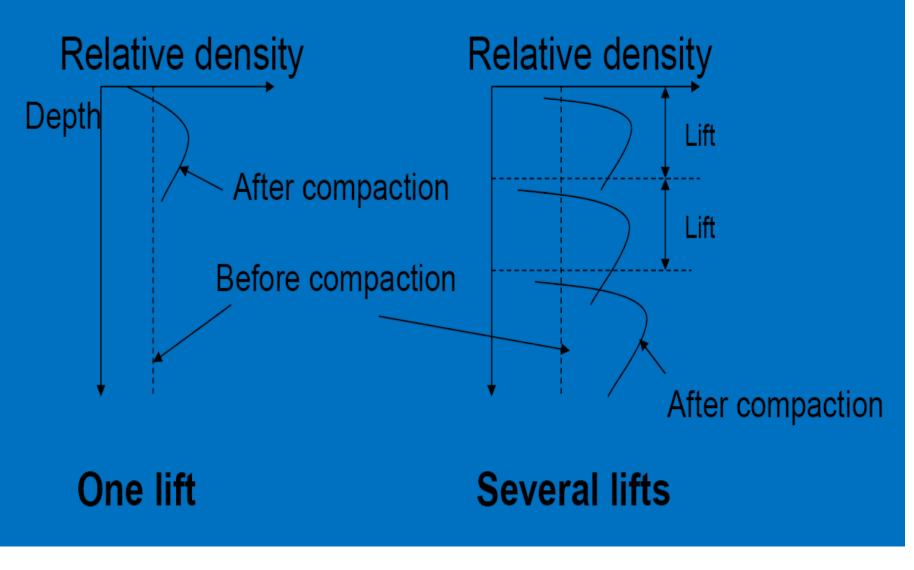

Shallow Surface Compaction:

Static rollers:

- Smooth steel rollers and pneumatic rollers.
- Sheepsfoot rollers.
- Grid rollers.


Impact and vibratory equipment:

- Tampers, rammers and plate compactors
- Vibrating rollers.
- Impact rollers



Type 6

Vibratory and impact compactors for shallow compaction

showing density in sand before and after compaction

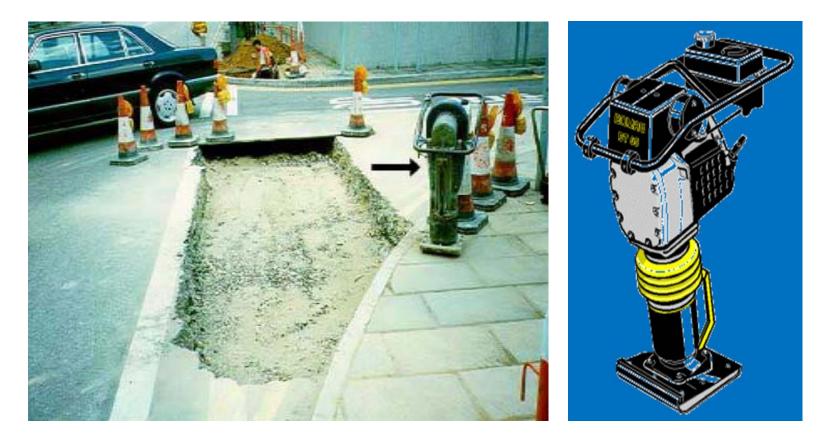
Table showing typical characteristics of impact and vibratory equipment for shallow compaction:

Type no. and Name	Mass,t	Max.speed, Km/hr	Vibrating frequency, HZ	Depth of lift,m	Number of passes
1.Vibrating rammer	0.3-0.1	-	7-10	0.2-0.4	2-4
2.Light vibrating plate	0.06-0.8	1	10-80	0.15-0.5	24
3.Light vibrating roller	0.6-2	2-4	25-70	0.3-0.5	4-6
4.Heavy towed roller	6-15	8-10	25-30	0.3-1.5	4-6
5.Heavy self propelled roller	6-15	6-13	25-40	0.3-1.5	4-6
6.Impact roller	7	10-14	-	0.5-3	Up to 30

Field Compaction

Different types of rollers (clockwise from right):

- Pneumatic rubber tired roller
- Vibratory roller
- Smooth-wheel roller
- Sheepsfoot roller



Smooth Wheeled Roller

Compacts effectively only to 200-300 mm; therefore, place the soil in shallow layers (lifts)

Vibrating Plates

- for compacting very small areas
- effective for granular soils

Sheepsfoot Roller

Provides kneading action; "walks out" after compaction Very effective on clays

Impact Roller

Provides deeper (2-3m) compaction. e.g., air field

Suitability of Rollers

Group	(OST) populác	Compaction Characteristics and Type of rollers suitable	10 30
	1 2	3	t
GH	Well-graded clean, gravels- sand mixtures	Good : tractor, rubber-tired, steel wheel or vibratory roller	100
GP	Poorly graded clean gravels, gravel-sand mixtures	Good : tractor, rubber-tired, steel wheel or vibratory roller	
GM	Silty gravel, poorly-graded gravel-sand silts	Good : rubber- tired or light sheepsfoot roller	1000
GC	Clayey gravels, poorly graded gravel-sand clays	rubber-tired or	100
sw	Well-graded clean sands, gravelly sands	Good : tractor, rubber-tired or vibratory roller	100
P	Poorly graded clean sands, sand-gravel mixtures	Good: tractor, rubber-tired or vibratory roller	1

3	2	1
Good : rubber- tired or sheepsfoot roller	Silty sands, poorly graded sand-silt mixtures	SM
Good to fair : rubber-tired, or sheepsfoot roller	Clayey sands, poorly graded sand-clay mixtures	SC
Good to poor : rubber-tired or sheepsfoot roller	Inorganic silts and clayey silts	ML
Good to fair : sheepsfoot or rubber-tired roller	Inorganic clays of low to medium plasticity	CL
Fair to poor : sheepsfoot or rubber-tired roller	Organic silts and silty clays, low plasticity	OL
Fair to poor : sheepsfoot or rubber-tired roller	Inorganic clayey silts, elastic silts	МН
Fair to poor : sheepsfoot roller	high plasticity sheepsfoo	
Fair to poor sheepsfoot roller	Organic clays and silty clays	он
Not suitable	Peat Not suitable	

Properties of Compacted Soil

	Range of densities, t/m ³			
Soil classification	Very loose state	Laboratory std. compaction	Very dense state	
GW	1.8-1.9	2.0-2.2	2.2-2.3	
GW-GM, GM, GW-GP, GP-GM	1.7-1.9	1.8-2.1	. 2.1-2.3	
GP	1.8	1.8-2.0	2.2	
SW	1.5-1.7	1.8-2.1	2.1	
SW-SM, SP-SM, SM	1.3-1.6	1.8-2.0	1.9-2.1	
SP	1.4-1.6	1.6-1.9	1.8-2.0	

Sand properties	Density index," %				
	0-15 (very loose)	15-35 (loose)	35-65 (medium dense)	65-85 (dense)	85-100 (very dense)
N value, blows/300 mm	<4	4-1)	10-30	20. 50	
CPT resistane, [†] MPa	<5	5-10	10-15	30-50	> 50
Dry unit weight, kN/m3	< 14	14-16	16-18	15-20	> 20
Friction angle, degrees	< 30	30-32	32-35	18-20 35-38	> 20 > 38