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When k =25, the free electron energy is given by Eqn (8.34)

n2h?
Lo E=omal " gmat CE

"This is the same energy as that for a free particle in a potential well of width a.
If the size of the well is replaced by the distance between the atoms, say 0.3 nm, then fiomm - (8.35)
E=4n%eV. h "

This shows that beyond a few discontinuities in the (E — k) curve,

E — c0. The regions beyond g,
discontinuities are called Brillouin zones.

8.7 Brillouin Zones in Two Dimensions
The condition for any discontinuity is

nn
k=*—n-. (a]n

For two-dimensional case, the corresponding conditions is

80
k,n1+k,nz—5(nl+nz),

where ) and n, are integers relating to x- and y-axis respectively. To sketch the first zone ny and n; are
madein turn to 1 or 0. The borders of the first zone are

m=+1, n;=0, so, k,=:|:§
m=0, nmy=i1, g k,:ﬂ:g.
:gi:ﬁz:; 2:1::,::: zz:r:;is wac s:au‘:e passing through the points A, B, C and D [Fig.8.13).
m=+l, ny=4), giving  k, 4, =2a—n
M=l m=141, giving —k,+k,=za—"
M=+l np=-y, giving k,—k,:za—"
MEL M=), giving —h—k,:za—".

Md Brillowin zope i 8,CD
*land £, ne is the area bet PQ,R,Sand A, B
*2, the thirg Brilloyin Zone may be Obtaine; [erl:gens 1;?].
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Fig. 8.13: Brillouin zones for a square lattice

871 Number of Wave Functions in a Band

Wehave seen that in an infinitely long one-dim

ensional crystal there are certain allowed energy ranges
which have a continuous distribution of energy.

Foralinear crystals of length L, the periodic boundary condition is 1(x + L) = Y(x).
Asthe wave function are Bloch functions, we have elK(s+L) ur(x+ L)= ek y; (x).
Since uy (x + L)=u(x).

. etKx+L) =eikx or, elkL = 1.
2nn
L polnn 8.38
k . (8.38)
Mihn=t) 4o
2 4n
=+, " 8.39
! onk=x L L (B28
| Sothe Bumber of possible wave function in range d k is
2n
dk= = dn, [from eqn (8.38)]
or,dn= .} dk. ey
2n

Iu. "’,’ fifs‘ Brillouin zone, the maximum value of k is 7/a, where a is the length of the primitive cell.
Wiy M a crysta) of length L, the number of primitive cells is N, then a = L/N. Sc'». the maximum value
Rty oot Brillouin 20ne is Nt/ L. This means that the seriesin ¢qn (8.39) terminates at N/ L, Thus,
| gy number of alloweqd k-values in the first Brillouin zone is N. Hence, the total number of possible
| “ny energy bang is equal to the number of primitive unit cells N.
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Since an electron has two spin states and Pauli’s exclusion principle allows at best twq

date a maximu; eltctron
: single state, ¢ach energy band can accommo ximum of 2y iy
diowosiai te spins in a &":‘ml_ conductors and insulators this resultant plays an important re, electro,1l
872 Conoept of Effective Mass of
In a crystal the electrons interact with the lattice and are not completely free. The wave o

i |

|
Electron and Hole

therefore, differs from that of an electron in free space. So, while using the equations of :Ie mc;: Moty ,r
for charge carriers in a crystal, we must keep in mind the altered value of particle mass calleq t {
mass (m"*) due to the effect of the crystal lattice. Then the electrons (and holes) can be rega.—ded“ﬂ"“n
free charge carriers and Newton's second law of motion can be applied to describe their dynamic l: gy
We consider an clectron of charge e and mass m moving in a crystal lattice of electric field g o
acceleration @ = < in the periodic lattice is not constant. Let the variation of acceleration jg d :
variation of electron’s mass while moving in the lattice. e 1o g
- the acceleration a = ';E and the force on the electron is
F=m'a. s
(841
Now the group velocity of the electron wave is
% _dw _ nﬂ_anE_ 1dE
¢=qk "dk hdk hdk’' (84)
where E=hv and i =h/2n.
Acceleration
godu 1 4£E _1dEdk
dt  hdkdr hdk®dt
But ik =p and :_i% =F
L dk_F
Ydr T n
So
1 d’E n?
“wap =g L
de?
Comparing eqns (8.41) and (8.43), we get i
nZ !
m'= o (4 |
rrd

Thus, d i th &8
etermining the value of 22, we can calculate the value of the effective mass m*.

(i) Variation . ;

Using this W:fogv:irlhhﬁﬁ;ngesv“‘l?lﬁon of E with k for the first allowed band is shown in Fig: 81408
(i) Variation of v with k; Fi with k, the group velocity v = v can be calculated using eqn (842}
increase of k (ie., energy)-”g ;:;ib) shows the variation of v with k. For k = 0, v = 0 and ¥i" l{h‘
at the point of inflection of s and reaches a maximum value at k = ko, where ko is the value®!

ke the (E - k) curve. Beyond 3 y
at k =n/a. The negative value of k showesya :hnkﬂ:r"l')lc’:i?:ut: decrease and finally assume? ;
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of m* with k: Fig. 8.14 (c) shows the variation
k., Around k=0, m* increases, reaches its maximum
point of inflection of the (E — k) curve. Above the
2 ion, m* is negativeand as k — n/a, m* red

e e e 26

P’i":;:“ negative value. B /
o3 mﬁwmmisdutotheforamwmm( by Bt
The nﬁ“ﬁ"") in one direction leading to a gain in m““‘“mm
.M’ ite direction. This results in negative effective mass.

cquation E= !;7:5 is satisfied near the bottom of the band ()
“:m“m.hasawnstamvalu,gmwi&m. ok, /l.
w:li“ﬂﬂics. Fig.8.14 (b) showsthatbeyond the infl "m \'f/
4 v decreases due to the decrease of accel This
h Mind\isregionofkthehmcem.wmrd. ©

" Wonﬂ:eclcctronanditbehamuapoﬁﬁva,w
% 2 e called hole.

N/

{iv) Variation of fi, with k: The degree of freedom of an clectron @
is defined 3s o S yaE
== () (845)

fi givesa measure of extent to which the electron is free. When

meislarge, fi is small, the particle, then behaves as a heavy par- e > i ﬂla—>k

ide. Jf fe =1, the electron behaves as a free electron.
Fig. 8.14: E, m* and f; as 2 function
ofk

88 Crystal Momentum

The momentum associated with the motion of a free electron is ik, where K is the wave vector. This
momentum of free electron is called the true momentum which helps to understand the dynamical be-
haviour of it. For example, the energy of the free clectron is

¥
nk 1 K\ (an® 1 h!) 1 :
_ke 1\ ( BN\ (L) (5 == 846
& 2m (2m)(4n2)(12) (Zm)(lz 2mp2 )
This  was first introduced by Sommerfeld while formutating the theory of free electrons.
However, when an electron moves in a periodic potential, ik does not rep t the troe s

the energy does not vary with E in the manner as it does in case of a free clectron and as such known as
the rystal momentum.

For an electron moving in a periodic potential, AE is not the true clectron momentum. This is also
uPnﬁ,T‘d by the fact that, the Bloch wave functions which are cigenstate of the Hamiltonian, are not
B ly eig; of the tum operator

cqh
PYi(N= E.Vll'k(ﬂ= %V [C‘w“k (ﬂ] = "W’t(ﬂ*’e't'iTVHk(ﬂ.
i

(8.47)

:.i%(m’“°“"“.‘4|"¥”k¢t(ﬂstillhiisanu jon of tum j to the periodic potential of the

Fry"'L'H‘i‘h\ﬂhyﬂlc for a lattice is known as the crystal momentut, K being dlcmvmr_inuod\wed
" Bloch theorem,

tssp iy
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5 = hk is a constant of
| he free electron momentum P Mmotion

It is to be remembett;ld::ll. :er:d al hE is not constant of motion and cannot be calculateq :l‘:l OF 3
electron moving in periodic po value can be calculated. On the other hanq

. hod, only its average Y < , thy
quantum mechanical melmu_d cﬁI: ed constant for a state of given energy just as the true "'°mcn: <

momentum isa ; 4 ! o i e
dynamical particles gives its energy. For this reason, 7 dealing wi ,m ion of electron wigh i ;
use conservation of arystal momentum instead of true electron momentum. £

Insulators and Semiconductors

89 Distinction between Metals,

We consider an energy band which is flled with electrons up to avalue k; (ky <m/a) as shown ip
The effective number of free electrons in the band is responsible to the conductivity of this bang_
E

ig.815
tewt m (d2E
fe=y\aw

gives the extent up to whichan electronin the k state
is free which would participate in electron conduc-
tion. The total number of free electrons in the band

is given by
N¢«=ka.
k

3" corresponds to various occupied energy states in
E
the band.

-k o ki nla k
Fig. 8.15: Energy band filled up to the state k,

(8.48) -nla

Now the number of possible states in k to k + d k for a one-dimensional lattice of length L is
L
dn=—dk.
= dk
- the total number of free electrons present within the limit —k, to +k; is
1 +ky L ky
Ner=2x th fidk= ;J fidk.
=k =k

The factor 2 on the right side of e i i
qn (8.49) is due to the f; mum of
two electrons with opposite spin. gl ibat cash. satecan g eupiR NS

k

Nl m(dE

,.N,g—;j 7(_ z)dk, ['~'fk=m d’E
_k‘ﬂ dk nz dk?

2Lm (M g2
. ek i P D) (850)
h )y dk i \dk )iy,
The behaviour of solids as insula
Theory as follows: Insuator, semiconductor and conductor can be explained on the basis of Bard

(849)
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\{{// E;=0

Conduction band
(CB)

Valerice b3nd 7 7
WI 0 U,
nsulator emiconductor Metal
(a) ®) (c)

Fig. 8.16: Distribution of electrons in insulator, semiconductor and metal.
The shaded areas are occupied by electrons

(a) Insulators: From the (E-k) curve, it is clear that, at the top (and bottom) of the band %% =0as k=0,

#/a. So from eqn (8.50), Neg = 0. Thus when the valence band is completely filled (and the conduction

band is completely empty) the solid behaves as a perfect insulator [Fig.8.16(a)]. Thereisa forbidden energy
gapor band gap (E g) between the valence band and conduction. For example, diamond is a good insulator

having band gap Eg ~6eV. As the electrons in the valence band ordinarily do not possess this amount of
energy they cannot transit to the conduction band and participate in the electrical conduction process. As
aresult, the solid behaves as an insulator. All solids with large band gap (E,) are good electrical insulators.

(b) Semiconductors: There is a class of solids like Germanium (Ge) and Silicon (Si), etc. for which the
band gap Eg is relatively small ~ 1eV. It is, therefore, possible for some electrons at room temperature to
have thermal energy to jump across the forbidden gap into the empty conduction band. In presence of an
eectric field, these electrons constitute a limited current. The conductivity of such materials lies between
good conductor and insulator [Fig. 8.16(b)].

(c) Conductors (Metals): Since the value of 5‘"—5 is the maximum at the point of inflection of (E — k) curve
Fig.8.15, the effective number of electrons Ng is the maximum. So, in a material with completely filled
vllence band, there is a large number of the electrons available for conduction. Such materials are conduc-
tors like all metals. The valence band and conduction band in conductors partially overlap so that the band
8% Eg =0, Fig. 8.16 (c).

891 Effect of Temperature

In case of good conductors (metals) with the increase in temperature, more and more phonons are excited

which scatter electrons and reduce their mobility. This, in turns, leads to the increase in resistivity and

decrease the conductivity of metals. But in case of semiconductors, increase in temperature causes more

ﬂqd more electrons in the valence band to have sufficient enetgy to jump into the conduction band. Hence,

With the rise of tem \perature the conductivity of the semiconductors increases. This is an important distinction
tween metals and serniconductors.

810 Direct Experimental Evidence for Band Structure in Solids
e esential requirement for the direct evidence of the band structure of the energy levels in solids are:
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allowed bands should be experimentally Confirmey.
® “The existence of energy gap AE betweer that allowed bands are partly filled in mﬂih.nd%
(ii) There should be d 9
pletely filled in insulators. ands s experimentally confirmed from the study of yar:
The existence AE between allowed

bsorption and ductivity in semiconductors gng; = 0 of
resistivity "”‘ oﬁhcﬁdlh'f mmdbml:isaepardy filled in metals and completely filleq hlm‘"t
?:na from duupuimmhlsmdyof soft X-m'spemuscoply.
1 1
3 |
st |
I Z .
£ e
58
i il
~— ~—
> transitions

Fig. 8.17: Various transitions in soft X-ray spectrocopy

In Fig 8.17, A represcnts the energy level of a core clectron, say, 1s (K -shell) state. This type of core levels
are sharp. Let the bombardment of a suitable cathode ray electron to the target atom, the core electron is
mvedmdammyisawedthmmismncyinthc!sstmmnbeﬁlledbythetransiﬁonofm
clectron in the higher allowed band which is partly filled [Fig. 8.17 (a)].-

Smcﬂntatennenugylﬂdsinhi@abmdﬁomwhetcuansiﬁonwouldtakeplacctovz,dlmwm
beno:misinn,ifv>vz.Suddmemisﬁmsofaumshionswﬂloccu:bchavingascmissionedgewimn
v|<v<v;.Forv<vl,memimionwﬂlocwrdu:mﬂwabscnccofmnsitionlevds.Th:obmd

ission bandwidth is 2 of the extent up to which the allowed band is filled.

Fig 8.17 (a) shows the various absorption transitions of X-rays in the same specimen.
Fﬂ'v<vz.ﬂlﬂtisnoahupﬁonoien¢rgymforv=vz.thcreisanabsorptioncdge.Forv:-v:.
absorption band arises. Hence, the existence of the unfilled levels in the allowed band is evid ced by the

absorption of energy. In case of metals, the absorption and emission edges coincide in frequency.

'nrmisimhndsbrnon-mmlsmdiﬂnmtﬁum those of metals and have no sharp edges. In case
dmﬁﬂ&&em&omﬁﬂedtnlmm:dlcvdsocmrweraregionproportionaltokTﬂﬂheFm
I"‘l“""ll""“‘-"’"“tl’“""m?dnm'Iln'siswhylhgwis*lti:oflheemissioﬂedgcis&empcl'at\ll!‘“l"“‘

dent.
8.11 Limiting Cases of Periodic Potential

pondy sihard ig-Penny model, Sommerfeld's free electron theory is used which B
two limiting oibis m“m‘?ﬂlTheeﬁ’enofionoomswmotbetomﬂyignorcdnﬂ“m'
cases arise where the periodic potential is either very weak or very strong. In case m
Tl is almost bound to the minimum of the potential and the
the fattice is as being j i of the p
isas a perturbation to this minimum. This is tight binding approximation.
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 solidswhere the above methods are inadequate, we complex methods like
. ““pl:ﬂt wave (OPW) or augmented plane waye (APW) mmm
ishy Free Electron (NFE) Approximation
potential is assumed to be very weak in

comparison to the KE E, and the effect
et pefhistic posential s peyirbation Undﬂmmmmmumwmmm bebroad and the
dthe rm gaps quite narrow.
de:e periodic potential V(x) in a one-dimensional arystal be represented as
14 2mV(x)
T 1 (8.51)
ts the periodicity of lattice. Then the one-dim, I Schrodinger’s eq may be written
I %y  [2m ay
® =7 [FE*'TI(X)] Yx)=00r, =5 + [R+rfin] v =0. (8.52)
As flx)isa periodic function of x, we can express it as a Fourier series, ie.,
00
f@)=Y Cpe ™ (853)
n=-00
1(° i i
with Ca=—| flx)e™"dx, (8.54)
(1]
where a is the lattice constant of the crystal.
IV, be the Fourier expansion coefficient of V(x), then according to eqn (8.51)
n ”z
Vo= -ﬁrﬁ- . (8.55)
The wave function y(x) must have the Bloch form
oc
Yx)=e" ™ U) =™ Y bae T, (856)
n=—00
where U(x) is a periodic function of a, it can be expressed as a Fourier series as
o0
Up(x)=) bae™™". (8:57)
In case the electron i ! free, y=0and n=0, when
case the electron is completely ity s

Inthe limit Uy(x) — bg and K — Ko. So,as x — 0 all b, (except by) approach zero. Then the approximate
@pression for the wave function is of the form:

Y= boe"‘+r{e"‘2"-"§’“}
n#0

Eqn (8.59) is valid for small values of y

or, Y(x)= [bo + '!Zb.. e‘“-“‘ e'Kx = U(x)e'™,
n#0

(8.59)

(8.60)
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-2zat | W a
where U =bo+y 2 bre % J e gr =g
n#0 . y
jtuti i 8.52), we get { d values of n and
Substituting eqn (8.59) in f-'qn(z ’)<z b5+bnc ]e'*’n‘*’?’zzzbl C, o!(K-ta-n), { forall aloW€ a O
iK. - n o = i z =0,itn#-n".
h(‘:_ﬂ) < x+r§[(’(° ") i f nF0n'#0 E o (8g1) 'i o 4
2nn { (8.68) reduces to
Kn=—K-—. | s ean
i ” a 8sy bo (K2-K*)a+12 Y b,Ca=0. .69
Asa first approximation, we neglect 72 term in eqn (8.61). ‘Then multiplying the equation by e-ix,.: X gl
integrating over unit cell from x =0to x =a. we have d pgin replacing n by —7 in eqn (8.53), we get
¥ s b i{on - apx 00
b,,(xg-m)f eﬂ?‘d”yZ[{(K;-xﬁ)beoc,.}xf i dx] 0. @ f= Y et 870)
o ) ) 63) iy
por=, a Ihe complex conjugate of eqn (8.53) is
2umeay
e e dx=0, < : = i
L = Z Cre™ o, flx)= Z Cett. (8.71)
for all values of n in the summation. Then n=—o00 o
b ( KDZ = KZ) =0, o, K= K,. i since f*(x)=f(x)- Comparing eqns (8.70) and (8.71), we get
Again, for m #0, Cn=C,. (8.72)
a
J e ax =0 Now using eqns (8.65) and (8.72) in eqn (8.69), we get
5 C;Cn C*Cn 2nn
and the second integral in eqn (8.61) gives zero except m = n. K=K +7" 3 =K47) ————— [ K,=K- —-—] i (8.73)
So 4 J ;K’--Kﬁ éxz_(K_zn_Tn)z a
2_ k2 2= L boCm boC
T [(K" K”') bn +b,,C,,,] a=0or by = 1(—5‘ e = ———Kﬁ. _';(2. (8.65) The above relation can be expressed in terms of E (= %ﬂ) as follows:
.. from eqn (8.64) ] J
: neKe Vol
2_ 2 2mE K2n? E=_+z_'_,'—z_-_§‘ (8.74)
K —KO.OI,T=I(gor,E= 20m (8.66) 2m nﬂ(%)_;_m(x_z_ﬁﬂ)
The ion i : |
quh:g b the same as that for a free particle. | UK2~K? for a particular value of n, then one of the quantities
substituting the value of by, from eqn (8.65) into eqn (8.60), we get ! . G
| 0. . n -
; (K‘—Kﬁ)mz————l(z_xze 0
YR =boes 1493 Cn -t @) | TR
n#0 K -K? | 9eqn(8.67) tends to zero and the corresponding term will tend to infinity despite y is very small. Then

Eqn (3'6?) shows that the contribution of th tieeqn (8.59) is not a suitable form of the wave function (x). Further, if K2 K2, then
the periodic potential is zero. To obtain seco

e first order correction to the energy of a free particle dueto
b e o AR comegtinn, we mullply eqn (84

-iKz {

K:*K":tl(;z—v;—l ®.75)

Since, f . : W 8.67). For the lower
) 3 vince, for the = 0 and hence excluded from eqn (
abo (K5 - K?) +7Z ((x3- K2) b, +hCo] [ e 2 , ¢ amsern g, | 8N, we gey b e e 8
dx+ b e dr 8
g0 5 Y wCn] € ‘ nn (8.76)
n#0 n'#0 0 i K=—. 3
(8.68) a
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E@(&&)nfnswaﬂmebandadgepoimsasnmryasmmebothposiﬁveasw:linnegﬁ“m
Now!let K = nnja, whence K, = K—2nn/a = —*%. Then K2~K?and b, wiunolhev!l’yhrggm
this condition b, will not be very small. The wave function in this case can be written as

¥lx)=boe™* +yb, e'** e =by e’ +7b, eiKe*. @
As K,_.=——K:tth:hndedge,¢(x}ineqn(8.77)il\dle result of superposition of a wave travelling along

the positive x-direction and the other along the negative x-direction, i.c., (x) represents a standing wave
Now putting

ﬂI)= z Ca 2_zn-n
and y(x) as given by eqn (8.77) in eqn (8.52), we get

bﬁ (K:— K‘) ein+rb. (K: = KZ) el(l’—’T“)x +Tbﬂ): C;ex(nz:m'l-)x
X Liad
478, Y Gl ) =g, )
w'#0

Multiplying eqn (8.78) by e~/* on both sides and then integrating within limits, x =0 to x = a, wefind
. g limits, x =0to x =4, We
that the contributions of the second and third terms become zero and that from the fourth term jis obtained

only for n’ = n. Finally,
(K- K?) b+ 2Cyba=0. (67
Similarly, multiplying both sides of eqn (8.78) by
e~ 1Kex _ g-Uk-22n/a)x
and then integrating from x =0to x =a, we get
(8.80)

Cabo+ (K2~ K2) b, =0.

The 8.79) _p.=0
exist, :{m (8:79) and (8.80) are a set of homogeneous equations whose solutions other than b0 =ba

(KE_KZ) r’C, i 8.81)
6@ K-re |~ (G-K) (K- kD) -riC.C, =0 ;
Thisisa d havmg 142
S (G e ey e
Using the relations, £ = 5.
Eqn (8.82) can be expressed as
88

S G N me ]|

|
|
|

|
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Authe band edge, K — Ky ="F, where eqn (8.83) reduces to

E=E,x|V]

2
()
2Zm\ a
isthe energy of a free particle at the band edge points.
The results of the foregoing discussion can be summarized as below:

(i) There exists an energy gap or discontinuity in the E versus K curve due to the internal Bragg reflection
at the band edge points K =+2=. Eqn(8.81) shows that the energy gap for the forbidden band is of
width 2|V, |, Vi, being the nth Fourier coefficient in the Fourier expansion of the lattice potential.

(i) For|K|> 2%, E(K) is greater than the value given by eqn (8.64) where (K‘— K2) is sufficient to reduce
1y sufficiently smail. Similarly, for |K| < %, E(K) must be less than the value given by eqn (8.84). These
conditions will be satisfied, if the positive sign and negati sign be chosen for |K| > 2% and |K| < 73

respectively in eqn (8.84).

(8.84)
with
(8.85)

E(K)

Wa O We

Fig, 8.18: E versus K curve for free electran approximation

L -w-ma!ﬂnwizhKfomndcctmnmiwwninﬁg.&lﬂuahﬂngd

(i) i
) The schemaric The E X curves are nearly parabolic near the

Jrom eqns(8.71) and (8.80). Fig. 8.18 shows thet

Th“'ﬁmwmm of the electron (m;) anbcalculﬂ‘dbyuuns
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4 .83).
where K’ < 1t/a in eqn (8.83). ]
2 [ nnyt, ko s mis 1—41(2(1'-5) S
; E(K)-L (——-) +K' +may 7 MAE ) (03
& “om|\a
where AE=2|Val. o
For points near the bottom of the upper band K’ is very small. From eqn (8.86) by expanding i T
or poin
thtoreslo and neglecting higher order terms we get
1 nK? 4E,
E(K):E,.,+§AE+—2M‘ 1+E » o
Differentiating twice, we get QE MW ( A.E,,)
2" li+—].
d’k’ m AE,
" m :
S m'=—,—=——_—__T_E‘_ o

It can be shown that the effective mass of holes (m;.) near the top of the lower band is the same as m,
In conclusion, following facts were observed in the nearly free electron approximation method:
(i) The PE of the nearly free electron is small compared to its total energy.
(i) There is a strong interaction between the neighbouring atoms in the crystal.
(iii) As the atoms are assumed to be situated close to each other, the wave functions of the neighbouring
electrons in different atoms overlap to a large extent.
(iv) The width of the forbidden bands is smaller than the allowed bands.
(v) The wave functions and energy states of the crystal do not resemble with those of individual atoms.

8.11.2 The Tight Binding Approximation o) (o) ®) @) (o)
Bloch in 1928 introduced an entirely new scheme
for the construction of the crystal wave func-
tion known as the tight binding approximation or
the linear combinations of atomic orbitals (LCAO)
method.

This approximation deals with the situations in
which the overlap of atomic wave function is enough
to require corrections to the pictures of the isolated
atoms. In this method, one starts from the wave
functions for an electron in a free atom and then
constructs a crystal orbital which just equals the
LACO's and describes the electron in the periodic
field of crystal as a whole.

Fig. 8.19: Two-dimensional square lattice showing
the positions of the nth atom and an electron

We c&?l.nsldcx atwo-dimensional square array of atoms in a crystal where 7 and 7, represent respcclivel)l
the position vector of the electron and nth atom res;

! i pectively as shown in Fig, 8.19. 1by
‘6:’;5, ?2)0 shows the potentials of an electron in a free atom denoted by V(7) and that in 2 crystd
~7).

| pipation as

v
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function is as-
thod the electron wave i
n this “l:: -mﬂugnccd by the nearest atoms and .Y.ZO Vo (P-T)
zae other atoms in the crystal. If Y, (F~7,) | . & o
ction for an electron in a free atom | \
|
H
i
!
]
1
]
|
]
]
1

,umb th
w vac fun!

(7) the
::s,a]flhen il

wave function of the electron in a
7)may be expressed asa linear com-

p@=2 PR (890)

mmation extends over all the atoms in the Fig: ?.20: Potential of an electron in an atom V()]
11lelﬂl‘u:an be shown, the wave function () is 2nd ina crystal [V, (7- 7))

+ Bloch fumction, since

PP+ = D e ERo (P4 7ip = 7= e ERyo(F = 7y + 7o)

= ei[F-Fm)Zel{E(?’.—ﬂ.)] Yo F—(F = Fm)l = E'(E""")wk (. (8.91)
The crystal Hamiltonian H can be written as
H=Ho+H (8.92)
i 2
= Ho= B (7 —7n) (8.93)
2m >
and
H =V()-W(F-7). (8.94)
where 15(F - 7,) represents the potential due to the nth ground state atom on the electron at 7.
The electron energy is
JV«'}(F) [Ho+H' i (P dF7
Elk)= . (8.95)
f YD YD dr
e (8.96)

f YD dr=Y Y el xJ Y3 (F = ) Yo7 = Ta) dF.
m n
nthe overlap of the electron wave function between the neighbouring atoms be neglected, then

J Yy (F=Tm) Yoi7-7)d7=8mn (8.97)

ind

jap;.(r‘)wk(r‘)dﬁN. (8.98)
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Ninhetoulm-nbﬂofﬂmi“mayﬂ
- E(E) =%J. g1 (Ho+ H) (47 (139
fege o e
=‘:VJ""'*(F) [_E’:_:_vzﬂa(,-ﬂ?_)]¢.(ﬂdr+ﬁj¢k(ﬂlV(ﬂ— W~ Pl e (R gy

- j punnNdrs g LA [ VAV~ %= Fl a7
m B
(8.100)
Everyln'minthemmmaﬁonfmmu=nmu=N—l contains N identical m“‘““'mﬂkw
out by putting 7» =0. Then

s(E)=s.,+2r4‘-'-)j¢:,(?—r‘.)[vm— W Npo(N dF. ®10)

If y is spherical Iysymmic(lketh:gumdsntcofalhli metal), !helllhccontribuﬁonduelo;um
nurw:midnbonrmaybemodmbﬂhem.’lhubmeinwyﬂfor Fm=0is

wd
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gody _Centred Cubic (BCC) Lattice: The cight nearest neighbours are at

® e
rm =(taf2, +a(2, +a/2)
! E=(Eo—a)—8ﬂcos(k42n-)cos(k—’2£)cos(k;a). (8.107)
0 met’C‘“‘"d Cubic (FCC) Lattice: Here the twelve nearest neighbours are at
¢
(8.108)

rm =(0,%a.+a), (£a,0,%a), (+a,+a,0)
z 2 2 i 1 .45

kya k.a k:a k.a k.a ( kya )]
f=(Ea-a)— 4B [°°s (’z—)m 2 +°“('2_)“(T) +°°s(—z_) Azl
(8.109)
Thus, the s-band is described by a constant energy term (Eo — @) and a term depending on the electron

vave vector k.

mqn(&loﬁ). E is minimum for ky = ky =k; =0.
Mmbmofﬂ:eencrgybandisgivmby

Eponom = Eo—a—6f. (8.110)
J’lﬁ;(ﬂlv(ﬂ- w(Mly(dr=—a (8.102) The cnergy maximum corresponds to ky = ky = kz =<71/a and top of the energy band is given by
Eyop= Eo—a+6p (as ks =k, =k =+n/a). (8.111)
and for the nearest neighbour atoms wp = Eo—a+6p (as k,
Thus, the width of the energy band is

J Y (F-R)V(D - %(Dypo(P) d7=—F (8.109) g = (Eo-a+66) — (Eo—a—6B) =128 )
where 7.y is 3 vector connecting the atom at the origin with a nearest neighbour. @ and j are stant This pond tothesstatcoftheisolaledmmBqn(a.llz)slmwsdut,thcwi.d!hofenugyband

called the overiap integrais. Thus, eqn (8.101) reduces to the form inases with B which represents the overlap of the wave functions on the ighbouring atoms.

E(E):&—a—ﬂz g‘(E'i')_ (8.104)

Eqn (8.104) shows that the energy of the dlectron in the crystal differs from that of the free atom by?
constant & plus a term which depends on the wave vector E. I is thus the last part which transforms
discrete atomic levels into an energy band in the solid.

The summation in eqn (8.104) extends only over the nearest neighbour. Since free ion potential ({GE

r:" m'“:h;'::‘:“;w V(7). [V(7)— (7)) is a negative quantity and as such a and Pt

?.:;:, Application oleghtB.indiquﬁmﬁm to Cubic Bravais Lattices
wcw(sc)lmmlnthismﬂmmmsixneighbomformygiven jon at

T =(£4,0,0), (0,44,0), (0,0,%4), (8.105)
where a is the lattice constant,
Therefore

E=(E°_a’_2ﬂ(°°""“+m,kya+cosk,a). (8109

.

'U!i:mcrclrctmniclcvclsof&ceamnup'vesﬁsewnnmbmdsinthesdidwhﬂusduouutshdl

tectrons give rise to wider bands.

Similarly, from eqn (8.107) for the BCC lattice Eponom = Eo—@—8f and Evp = Eo—a+86.
~.energy bandwidth is

Exnp — Bvonom =168 (8.113)
wdfor FCC lattice from eqn (8.109), Eponom = Eo— @ — 12 and Eup = Eo—a+12f.
“bandwidth -
Erop — Evoton =24 (8.114)

The variation of energy bandwidth in SC, BCC, FCC lattice is shown in Fig. 8.21.

E,
S 16B 4B
CRREY )/ 5 %]

‘ (a) () ©
Fig, 8.21; s-bands for (a) SC (b) BCC (c) FCC lattice in tight binding approximation
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8.11.4 Energy Surfaces ¢ valence electronsin the field of their parent ang n

g ;mation, the PE ofth ; S Cighboy ..
In llgi:tll::-l;l;[:i :gﬁx:;j,m}?[;o"‘rl‘ﬁ:indical ¢s the separation between the ions is small comp, are?i x;nl,ﬁ
ions £ -
electron in de Broglie wavelength, i-¢. l kl g€l
k2a*
- coskasl- 2 @® g
The
3 k2a? kla? k2q2
- X —_ -
E(F)=(E-a)-2B [(1‘ o )* =% 1= )
=(Es-a)-6p +pa (kK] + k)
o E(E):(Eu—ﬂ)—ﬁﬁ +Ba? k%4 (for SC lattice). s
Similarly, for BCC lattice, 3l e
E(R)=(By-a)-8f+Ba’k* +-- (8.117)
and for FCC lattice, ¥ s
E(k)=(E-a)-12B +fa’k* +--. ®1g
8.11.5 Effective Mass of the Electron
The efective mass of the electron is
3 n " J2E 5 :
m :m = Eﬁ-;i [ gk—z =2fa* (for SC lamcc)] s (8.119)

Thus, m* o< 1/B, this implies that for a narrow energy band the electron Uehaves as a very heavy partide
in SC lattice.

From eqn (8.113)the width of the encrgy band ( Ewop— Em“m..) = 128 which refers to the bottom region
of the band and corresponds to the constant spherical encrgy surfaces (i.e., k = 0) as shown in Fig, 8,22 (2).
This means that the lowest energy state is at the centre of the zone and the higher encrgy states are at
the corners [Fig.8.22(c)]. With the increase of energy (k > 0), the energy surfaces bu!ge morc and more
towards the centre of the zone faces, until they intersect the zone boundary. Since the normal derivative of
E (E) is zero, the energy surfaces intersect the zone boundary orthogonally.

FiR |

F il i o

N

=
R el

A

7 (a) (b) (¢)
Fig. 8.22: En, A O 3
bol%om of lh:g’.y slu(‘:;::l';_‘ tight binding approximation for SC lattice. (a) near the

Way up the band and (c) near the top of the band.
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| crosssection through the el}ergy surfaces at equal intervals is depicted in Fig. 8.23. Fig. 8.23(a) shows
mall k the energy surfaces are spherical around the zone centre, The energy surfaces are also

3 - Fig, 8.23 (b) sh, ;
sphl:";:g e value of k (i.c. nearly free electron approximation), S ey s bl
w k

% k

-
.

3%
74

Fig. 8.23: Electron energy contours for SC lattice. (a) for tight binding approximation
(b) for nearly free electron approximation.

. o] with corners at the covers of the zone,

7\

/f-

—

nfa -n/a nla

Fundamental difference in the assumptions of nearly free electron approximation and tight binding
approximation

Nearly free electron approximation (NFA)
1.The PE of the electron is small compared to its
total energy.

2.The width of the forbidden bands is smaller com-
pared to its allowed bands.

Tight binding approximation (TBA)

1. The PE of the electron is nearly equal to its total
energy.

2. The width of the forbidden bands is larger com-
pared to allowed energy bands.

3. The atoms of the crystal are widely separated so
that the electron wave functions of neighbouring
atoms do not overlap to appreciable extent.

4. The interaction between the neighbouring atoms
is relatively weak.

5.The wave functions and energy as a whole are
closely related to those of an individual atom.

3.As the atoms of the crystal are assumed to be
dosed spaced, the electron wave functions of neigh-
bouring atoms overlap.

4 Theinteraction between the neighbouring atoms
1s strong,

5.The wave functions and the energy states in the

¢:’ystal do not resemble with those of an individual
dlom,

812 Wigner-Seitz Cellular Method
Saterin 1934 introduced the cellular method to calculate band structure using Wigner-Seitz’s method.
: T::I°H?Wing points are assumed:
2: 7he '“°I"d is monatomic such that all atoms in it are translationally equivalent. .
Eh:a:l/tlllxgner-Stzitz cell (cellular polyhedron) is chosen as the unit cell so that each atom lies at the centre of
Ay and hence shows the symmetry properties of the crystal. IR
the electron wave functions obey Bloch theorem it is necessary to find out the wave functions in one
"8rier-Seitz cell of the structure.




" ; spherical symmetry of the atom and the translatio
prsomira sy et i il cch Wi Se el
. mvrguamdlﬁwwbyasrm@“”fﬂ”@"““d“”d{mhwunm -

mmmmwismymﬂmmwm VA7) is assumed to be yagp;
msymmﬂryofthclowcﬁm(i) of the valence band and that of the atomic wave function fry,
whichd\gulmcebandisdedvedmdieame.Fofenmple.inascofNaﬂ\cvalcncebmdi,d -
35 state and the corresponding wave functi ¥ (7.0.9) can be scparated into radial part R(7) ang g,
angular part Y(6,¢)- Using the boundary conditions, that (i) the wave function and its derivative myg
mﬁnnmnndnemllboundarymd(ii)dwymisfvﬂlemodlmndlnmofpﬂiodicityommm ;
we can determine the allowed values of encrgies Eo. funcigy
Nowdxcndhlpartofthemveﬁmcﬁmk(?)mﬂiﬁthcequﬁon

1d dR\  2m 2
Far (r’—d—r)+—”7(£n-wn_o. ®12)
According to the condition stated above
dR
(E)r =0, @121

As R(r) must resemble 3s state near the ion, it must have two spherical nodes. The allowed values of £,
corresponding to different values of r; may be calculated. The energy obtained from the condition

dR
(E);"

is found to be much smaller than that corresponding to a frec atom and this leads to main source of binding

energy in metals like Na.
According to standard perturbation theory, in a cubic crystal, the energies of higher bands having 10
degeneracy at k =0 are given by e s o
Ex=Ey+ S (8.122)
where m* is the effective mass and
2
0 al
m=L Hﬁzl( lpsle) ; @)
m m ] &_Ea
In eqn (8.123), (0|p.|a) rep the matrix ¢l of the x ¢ of tum operalor

=

the states £ =0 in the band 0 and PR

another having energy E,

If Ey; be the energy dacticas & g energy Eq.

of all:lﬁu'dectmm l:::: the cell ':nnd; !&Mu Iofi!sown fon core, then the crystal energy is EEr- The PE
Asd:cdemun-ion.dectmn-dccu:nm- .“dfaﬁ""'lyonedxmmsidcmeoellalﬂ"ym“m
energy of an electron is given by lon-jon interactions cancel in this approximation, the

B=&+E(B), (ﬂ.lz‘)

where E(B) s the average KE of the
electron and E(B)=1Ey; Ey, the Fermi energy.

~~
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hen the pinding energy is given by
Eo= E(A)-[Eo+ E(B)) = [E(A) - Eol~ E(B), (8.125)
ere E(A)is the energy of a free atom.
The difference [E(A)— Eol is due to the boundary condi-
tion$ (dll’o ) E t
=] =0
dr )i
Crystal
inthe free atom and figp
(%) 5
— =0 H
ar /o=, NFree eiectron
nthe metal. Fig. 8.24 shows this difference. As the electron O i‘ —
density is more near the region of the nucleus, Eq < E(A) in \/
the solid and as such the PE is lowered. V()
In case of Na, E(A)— Eo~3eV and E(B)~2eV for ahalf-

filled band.

So, the binding energy
Fig. 8.24: Renormalisation of atomic

Eo=3eV—2eV =1eV [from Fig.8.24] wave function in Wigner-Seitz model

ltis to be remembered that the Wigner-Seitz method does not depend upon the structure of the crystal
but depends on the atomic volume.

In conclusion, the cellular method is greatly over-simplified and nowadays it has little use. The main
disadvantage lies in the fact that when we replace the Wigner-Seitz cell by a sphere, we ignore the crystal
structure and all anisotropic effects are completely masked out.

813 The Augmented Plane Wave (APW) Method
Shter in 1937 used the results of cellular method to overcome the following two major difficulties, viz.,
(i) The potential used in cellular method hasa discontinuous derivative whenever the boundary between
two cells is crossed [Fig. 8.25], but actually the potential is quite flat in these regions.
(i) The method requires lot of numerical calculations to match the wave functions at the boundary of
the cells (specially for K =0 states).

\\\ /"; R ,// \\ 4 ™ /”

/ X

Actual " Individual / .S (Cellu.lar

crystal =/ N, crystal / /4 \ LN m:th?'gl

potential A, | \ potential / P\ 7 papotenty
2 ) L / \ AN

\

Fig. 8,25: The cellular method potential has a discontinuous derivative

midway between two lattice points where the actual potential is flat.

F0sse g
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Fig. 8.26: The muffle-tin potential plotted along a line of ions

The potential due to an ion at the centre of the unit cell is given by

Vi(N-W forr<n
V(N=1% forri<r<rs

(8.126)
0 forr>ry

where ¥ is constant and r is the radius of the sphere inscribed in the Wigner-Seitz cell. 1 is actually the
average of the Coulomb potential —e2/r between the spheres of radii r; and r;, ie.,

1/
" 4mr?

e —_—

r
0 . r _3e2(r}—r,z)

[z 20

From the two solutions in the region r > r; and r < 1y, a solution of the Schrddinger’s equation can be
written as

anridr

Y Cim Bi(F.E) Yim(6.9), 7 <7,

Lm

Srgin=Coe! B8, 8.127)
Here Ry (7, E) is a solution of the radial equation
L9 (LR, [lU+1), 2mV(r) omE
r2ar (’z?) + [_r2 + g R = (7) R (8.128)

at a given energy E. C; ;m, Co are constants so that th i : 4
o e two solutions for 7 > r; and r < r; are continuous
71 () is a reciprocal lattice vector and Y(9, @) is a spherical harmonic. ’ :

Now ;
E+ =
P W=“"Z"j: (|k+g|r‘) X Yim(0, )Y, (8", °). (8129
', ¢’ define the polar directions of(l'c'+g), we get
AnGoiljy (& G
(ing e Ri (7, E) :
is value of Cy,, in

satisfying tm 12690 (8.127) we can define an APW, ¢k(F) = e'%7 in the interstitial %
Ou(P=eFiy, (7T 8.131)

inside the sphere with centre at [, ¢*(P ') (
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he exact WV function 1 (7) can be obtained by the superposition of individual ¢ (7), i.e..
|
“ V(=D ar—gp—g(M). (8.132)
B
ysing Y (F) as 2 trial function in a variational estimate of energy, we get
[(E—g)z—E] ak-,+Zﬂ“-ag_,-=0, (8-133)
where
gy (e tyo AT
pur= 2 - (E-0) -0)-81
+37(21+ 1P (cosByg) (|%-4 n) (|8 -g|n)x AL ST )
v L Ri(ri, E)

where O is the angle between (E = g‘)

and (E = E’) , R} (1, E) is the derivative of Ry (r;, E) and S, the
volume of the unit cell.

Now equating the secular determinant of the coefficient to zero, the band structure can be determined,
eg,

|(k - 8 - B8 g+ Bgr| =0- (8.135)

To have more accurate E(k) value, a larger secular determinant is needed. APW method is good for
aleulating the band structure in metals.

814 Orthogonalised Plane Wave (OPW) and Pseudo Potential Method
Herring in 1940 introduced the OPW method to overcome the limitationsin the NFE and LCAO methods
ithe calculations of energy band in solids.

The core electron wave functions are localised about the the lattice sites and the valence electron wave
functions have a rapid oscillatory behaviour having a 1ail. The OPW method uses the fact that the valence

Yave functions are orthogonal to the core wave functions. Hence, instead of expanding the wave f\u?cﬁons
Mterms of simple waves, Herring used an expansion of the wave functions in terms of waves which are
ady orthogonal to core wave functions. As a result of this orthogonalisation, wiggles are introducedin
2’1 € Waves in the neigbourhood of ion-sites.
OPW of wave number & may be expressed as
opwy =(1-P IR} (8.136)
With

I (8.137)
]

the core electron wave function. In eqn (8.137) 1R} and PIF)

Bthe pros .
tepre Jection operator ard |a) = alr) is OPW = plane wave — core function as

;‘:nt Tespectively a plane wave and a core function so that,
lted in Fig. 8.27.
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Nowthe conduction band state may be written in terms of general linear combination of OPW’s as
@é; e o w=Ze(B0-rlfsa)
e Al ¥ ututing ¥ in Schrodinger equation,
Hyp=E (E) Vi, (8.142)
we gcl £ D, - A e
n . > aq (F) HO- P|f+2) =B () Yaq ()0 - | +4). (8.143)
L/ : "
Let =Nz =
W ¥i= aq(F) l"*q)' (8.144)
(b) k
then
i Pr=(1- P (8.145)
‘>( Substituting this value of Y« in eqn (8.143), we get
[T+ V(I x - HPYy = E(E) ¢ — E (F) PQx
\&1- \\ﬂ]/ __ or, T + [V(r) - HP+ E (k) P ¢ = E (K) 9
:{ or, T¢k+W(7)¢k=E(ﬂ¢b (e
((::) ! " where ) 2y
! | v w(R=Vv(n+[E(F)-H] P=v(I+ L [E(F) - Ee]la)al i
! | | %
i é i W(7) s known as the pseudo-potential and ¢ (7) is the pseudo-wave function. Here Hla) = Eala)-
=l | | Eqn(8.146) shows that 1 and W (7) lead to the same set of values as their real parts.
| : | Since, E(E) > E, and V/(F) is negative, eqn (8.147) shows that [W (D] < V(7). this means by prop-
i ! ' ey choosxS\g)the te':'m [E(k)—H] Pg\:'e can make W(F) as small as we please. Thus, for calculating the
() igenvalues, the electron-ion potential in the low order perturbation theary can be succefolly used.
Fig. 8.27: (a) Plane wave (b) Rapid oscillation of Bloch function 1y near the atomic sites | Ascording to the second order perturbation theory
(c) Synthesis of OPW, ‘
Supposing | B) to be one of the core states 1! +(k|W|k)+Z ("“ﬂ‘”“‘) (8.148)
‘ E(k)=" e
(BIOPW,) = (B(1 - PJE) = (BIF) - (IPIF) | () ["’ \"""H
e o 3 8
=(BIE) Z(ﬁla)(ak ) =(BIE) - Z(alk)ﬁmp=°v e H
a °re prime indicates that g #0.
Here the orthogonalised character of the core states has been used; Yo
(Bla) =5, @ | -3 ‘(" sawi)] (8.149)
Assuming T to be the KE operator and V(7), th tion of B
§ e electron-ion interaction, 7 begin the pos! ‘ kz by
electron relative to the ion, then the Hamiltonjan of the system is i = l ‘71
Regn (g of the F state
e o 5.140) "148) represents the band structure energy
T+V(ﬂ__mvz+v(ﬂl ( 3
<
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If 7 be the position of an clec

1ron and F; that of an ion, then the individual ionic potential i given
oA,
Thus

w(r‘)=;"' (17~ Rl)- 8150
(E+§|W|E)=5[‘T) (E+(’;’|WIE) (8.151)

where 1 =
s(d)= E; A @15

is the structure factor. When the ions occupy precisely the lattice position at equilibrium, 5(7) become;
unity. This method has been successfully used to calculate the band structure of metals (Be, Na, K) anq
semiconductors (Gi, Si, etc.)

8.15 Answers of Some Important Questions
8.1. Discuss how energy bands are formed?
Ans, See Art.8.2.
8.2. State Bloch Theorem. What is the outcome of the theory?
Ans. Bloch theorem states that the solution of the Schrédinger equation for a periodic potential must
be of the form
Yl =e*"*uy(x),
where u(x) = ug(x + a), a being the period. Thus, the solutions are plane waves of the type i
modulated by the function u(x) having the same periodicity as the lattice.
The.outcomc of Bloch theorem is that the energy spectrum of an electron moving in a periodic po-
tential of allowed and forbidden energy regions (or bands).
8.3, What is the concept of effective mass of the electron?

Ans. Ina crystal the electrons interact with the lattice and are not completely free. The wave partick
300011. therefore. differs from that of an electron in free space. So, while using the equations of

lectre ::uynanncs for C'hargc carriers in a crystal we must keep in mind the altered value of the partick
mass called the effective mass(m*) due to the effect of the crystal lattice. Then the electrons (and holes)

can be regarded as free ch: i B} ; :
B dpriichelioion arge carriers and Newton’s second law of motion can be applied to describe

% . . . !
”w&mmm“m‘;f ::,h:"k:,:o elecqun ina pcr'dec potential is accelerated by an electric field or magn etic el
e n varies and this mass is called the effective mass of the electron.

the externally applied electric field a

mass of the electron is given by ccelerating the electron in the lattice, then the effective

»
sl (@E/arE)’
where = h/27 and k is the wave vector,
8.4. What do you mean by valence band?

Ans. In a solid the hi

ighest filled en 52 o
electrons transferred in ionic bonds :8Y b:r:i :::;t nl;c,l’ud:s clectrons shared in covalent ba™%
ang.

86.
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yalence band includes electrons which are transferred in case of ionic bond or shared in case of

covalent bonds. These electrons are not free to gain energy from an external electric field and hence
unable to move through the solid. The sharp atomic levels are spread out in solids and all the

2 rgy states up to forbidden energy region are occupied (st least at 0K) and there is no more free

electrons.

Wwhat is a conduction band?

Ans, The band of energy of valence electrons consisting of closely spaced energy levels is called
conduction band. The bottom of the conduction band has energy E.

The electrons in the valence orbit of atoms are loosely bound to the nucleus and are free to move

in the solid forming free electron gas. There is a change in energy of these electrons due to mutual

interaction. The value of energy of these electrons varies from zero to a maximum value called the

Fermi energy Ey. These electrons participate in the electric conduction process in presence of an

external electric field. The energy band of these electrons is called the conduction band.

What is forbidden gap?

Ans. The energy gap between the valence band and conduction band is called forbidden energy gap or
band gap. Electrons cannot have any energy in the forbidden energy gap. The energy of the forbidden
energy is called Band Gap (E g) .1f E, and E, represent respectively the energy of the topmost level
of the valence band and bottom level of conduction band, then Eg = Ec— Ey.

If Eg is very small, thermal excitation may excite the electrons in the valence band to the conduction
band, so that the solid, although an insulator at 0 K, may become a conductor at temperature 7> 0K.

. What are the sources of electrical resistance in solids?

Ans. The electrical conductivity depends mainly on two factors, viz., (a) temperature and (b) defects
(e.g., impurities).
According to Mathiessen’s rule
Prol = Ppure + Pisapurity:
where ppure is the temperature dependent of resistivity and Pimpusy is the resistivity due to scattering
of electrons by impurity atoms.
The temperature dependence of resistivity arises due to the scattering effect of thermal vibrations of
the atoms on the electrons. If Ap be the amplitude of the thermal vibrations, then the mean free path
Aofthe electron is
Ax /A%
Again, AZoc kT, . A2 1/T.
- pxlfAxT,
e, the resistivity is directly proportional to the temperature T of the solid.
The defect dependence of resistivity is due 10 the additional scattering of electrons by the defect or
impurities, Assigning two relaxation time, we can write,

1
l=-l—+"-,.
T % ¥

Where 4 is independent of temperature while 7/ depends on temperature.

V moom (1, 1Y M _ ™ _ i+ ppon(T) [Mathiessen's rule]
ks ( __)_szo+“,,‘, Po+ Py )

S DR
ne’r net\vo T
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Note that the symmetry properties discussed above refer to the ,
band. They hold for every band separately, but do not relate one band to anot?xmc
Let usturn now to the proofs of the abow_: pr.opemes. We shall only outlipe ther.
proofs here, leaving you to pursue the details in some of the advanced l’eferenﬂse
listed at the end of the chapter. Consider first the translational property (jy: 1‘,’:‘5
Bloch function at the point k + G may be written as S
¢k+G s ei(l+G)—ru[+G = eik-r(eic.,uk*c)- (5 lz)
Note that the factor inside the brackets of the last expression, which may be denoteq
by o(r), is periodic in the r-space with a period equal to the lattice vector. That js

ofr + R) = €€ Py or+ R) = €S uy () = (v)r.
This follows from the fact that uy, ¢ is periodic, and e'0R = 1, since G'R = n2r
where n is some integer. The expression in the brackets in (5.12) has, therefore, th;
same behavior as u,(r) in Eq. (5.3). We have thus shown that the state function
¥\ ¢ has the same form as V4, and consequently the two functions have the same
energy, since there is no physical basis for distinguishing between them.

Property (ii) may be established by noting that the Schrodinger equation
analogous to (5.6), which corresponds to the point — k, is the same as the equation
obtained by writing the complex conjugate equation of (5.6). This means that the
corresponding eigenvalues'are equal, that is, that E(—k) = Ex(k). Since the
energy E, (k) is a real number, however, it follows that E,(-k) = E,(k), which
is property (ii).

Property (iii) is derived by noting that if the real lattice is rotated by a symmetry
operation, the potential V (r) remains unchanged, and hence the new state function
obtained must have the same energy as the original state function. One
may show further that these new states correspond to rotations in k-space, and
this leads to the desired property.

5.5 NUMBER OF STATES IN THE BAND

We denoted the Bloch function by ¥, ,, which indicates that each value of the band
index n and the vector k specifies an electron state, or orbital. We shall now $h"
that the number of orbitals in a band inside the first zone is equal to the number 0
unit cells in the crystal. This is much the same as the statement made in connectio”
with the number of lattice vibrational modes (Section 3.3), and is Proved S
manner, by appealing to the boundary conditions.

; bound ¥ =
Consider first the one-dimensional case, in which the Bloch funet" W
the form

13)
u(x) = e™uy(x). ¢
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: mpose the periodic boundary condition on this function, i
» ;cs:lx::);:ved values of k are given by unction, it follows that the
on
e n2n
L (5.19)

—0, +1, £2, etc. [Note that u,(x) is intri iods

where n=90- = : 4 : nsically periodic,
condition w(x + L) = u(x) is automatically satisfied.] As in Section 3s§ t::
allowed values of k. form a uniform mesh whose unit spacing is 2nIL.‘ ‘The
aumber of states inside the first zone, whose length is 2n/q, is therefore equal to

(2mla)l(2niL) = Lla = N,

where N is the number of unit cells, in agreement with the assertion made
earlier.

A similar argument may be used to establish the validity of the statement in
1wo- and three-dimensional lattices.

It has been shown that each band has N states inside the first zone. Since
each such state can accommodate at most two electrons, of opposite spins, in
accordance with the Pauli exclusion princi ple, it follows that the maximum number
of electrons that may occupy a single band is 2N. This result is significant, as it will
be used in a later section to establish the criterion for predicting whether a solid
is goin ehave as a metal or an insulator.

56 THE NEARLY-FREE-ELECTRON MODEL

In Section 5.3 and 5.4 we studied the general properties of the state functions, and
of the energies of an electron moving in a crystalline solid. To obtain explicit
resuhsz however, we must solve the Schrodinger equation (5.1) for the actual
gﬁ:\ma] eyin l.hc particular solid of interest. But the process of solving the
cOnszn:.nger €quation for any but the simplest potentials is an arduo.us‘and time-
or obul,.ng. task, inundated with mathematical details. Althou;h .thls is essential
e thel:{ng re§ulls that may be compared with experit.nent_s. it is prcf_erablc to
advania iscussion of explicit solutions by using rather sn(r\plnﬁe_cl potentials. The
““‘hemit' 2 that we can solve the Schrodinger equation with only 'mlmmal

In th ical effort aﬂq thus concentrate on the new physical concepts mvolv;d’.
in which iel Present section we shall treat the nearly-free-electron (NFE) nrodel,
essentia)] :s assumed that the crystal potential is s0 wea\F that the electron bchav;s
Use of Y like a(free particle. The effects of the potential are then treated by : c
wea p;;‘"rba“°“ methods, which should be valid ina§much as the potentia ‘;s
in the g; is model should serve as a rough approximation 10 the valence bands

imple metals, that is, Na, K, Al. etc.
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In the following section, we shall treat the tight-binding model, in which
atomic potentials are so strong that the_ clectfon moves essemially. around a sing|,
atom, except for a small interaction with nenghbcrmg atoms, which may then be
treated as a perturbation. This model lies at the opposite end from the NFE moge|
in terms of the strength of crystal potential involved, and should serve as a rough
approximation to the narrow, inner bands in solids, e.g., the 3d band in transition
metals.

The empty-lattice model

The starling point for the NFE model is the solution of the Schrédinger equatiop
for the case in which the potential is exactly zero, i.e., the electron is entirely free.
However, we also require that the solutions satisfy the symmetry properties of
Section 5.4, which are imposed by the translational symmetry of the real lattice.
This leads to the so-called empty-lattice model.

E

|

i

H Sl
s & &

; a a

I Third band
FSecond band
} First band_
T a
a
|~—Firs| zonc"‘
zone zone ©

®)

: . . frec particle:
Fig. 5.10_(a) The familiar parabola representing the dispersion curve for 8 e:npty.lamce

i i icle in the :
— h2k%(2m,. (b) The dispersion curves for thg same partic : o arves in
r[:.lode'l’ sh':)v:"i?tg translational symmetry and the various bands. (c) Dispersion
the empty-lattice model (first zone only).
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. jonal lattice, the state functi .
For 3 one-dimens! tions and energies for the empty-
ice modcl are

¢,(0) —

ik
g , (5.15)

d E®Q =22
an (k) 2m° 5 (5.16)

rscript O indicates that the solutions refer to the
Wh“"(st:;i;zp;j). pThe energy E{f} which is plotted versus k in t;:nlzel';ulr:&d)
:S:iebi's a curve in the familiar parab_olicrsélap;e. l-;igure 5.10(b) shows the result
£ imposing the symmetry property (l)foh ection 5.4. Segments of the parabola
of Fig. 5.10(a) are cut at the edges of the various zones, and are translated by
qultiples of G = 2n/fz in order to ensure that the energy is the same at any two
cquivalent points. F.gure S:IO(C) displays the slyape_of the energy spectrum when
we confine our consnder:‘mon to the first Brillouin zone only. [Conversely,
Fig. 5.10(b) may be viewed as the result of translating Fig. 5.10(c) by
multiples of G.]

The type of representation used in Fig. 5.10(c) is referred to as the reduced-
sone scheme. Because it specifies all the needed information, it is the one we shall
find most convenient. The representation of Fig. 5.10(a), known as the extended-
20ne scheme, is convenient when we wish to emphasize the close connection between
a crystalline and a free electron. However, Fig. 5.10(b) employs the periodic-
zone scheme, and is sometimes useful in topological considerations involving the
k-space. All these representations are strictly equivalent; the use of any particular

one is dictated by convenience, and not by any intrinsic advantages it has over the
others.

The nearly-free-electron model

gﬁ: is the energy spectrum of Fig. 5.10(c) altered when the crystal potential is
seco:dugo account, or “turned on?” Figure 5.11(a) shows this. The first and
e anﬁs, which previously touched at the point A (and A") in Fig. 5.10(c)
Wne. A zp It, 5o that an energy gap is created at the boundary of the Brillouin
Viou;]y imlm”ar gap ls.creat‘ed at the center of the zone, where bands 2 and 3 pre-
Previoys) ersected (point B in Fig. 5.10c) and also at point C, where bands 3 and 4
are Cl‘catcydl'n tersected. Thus, in general, in the empty-lattice model, energy gaps
or the boy, :jn k-space wherever bands intersect, which occurs cither at the center
Modified b“ T]es of the BZ. At these points the shape of the spectrum s strongly
Potentia) o Crysta! potential, weak as this may be. (In effect, \.:fhal the C.I'YS':'
and struqa § accomplished is to smooth over the sharp “corners”’ present in the
In the ure of the empty lattice.) :

Yery lintle T®Mainder of the zone, however, the shape of the spectrum is affected

Y the erystal potential, since this is assumed to be weak. In that region
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Fig. 5.11 (a) Dispersion curves in the nearly-free-electron model, in th

scheme. (b) The same dispersion curves in the extended-zone scheme e reduced-zope

the k-space th i i : . e
::npt;-lafzzecr::o:j ;Kz;i;iegssesn:g(ll))' r:;z:;r: }:::;; cp::::‘xbohc shape inherited from the
P » n there behaves essentially like

a free electron.

By comparing Fig. 5.10(c) and Fig. 5.11(a), one notes that a hint of a banq
structure is almost present even in the empty-lattice model, except that the gaps
there vanish, since the bands touch at the zone boundaries. This vanishinglzs
foreseen, of course, since no energy gaps are expected to appear in the spectrum
of a free particle. The point is that even a weak potential leads to the creation of
gaps, in agreement with the results of Sections 5.2 and 5.3.

Figure 5.11(b) shows the band structure for the NFE model, represented
according to the extended-zone scheme, which should be compared with
Fig. 5.10(a). Note that, except at the zone boundaries at which gaps are created,
the dispersion curve is essentially the same as the free-electron curve.

We made the above assertions without proofs; we shall now outline proofs on
the basis of the perturbation method of Section A.7. Suppose, for instance, that we
seek to find the influence of the crystal potential on the first band in Fig. 5.10(c)
When we treat the potential ¥ (x) as a perturbation, the perturbed energy E\(K)
up to the second order of the potential is given by

[(n. k|1, B 517

Ek) = EP(k) + WiMVIUD + 2 gogy = By

and, which is the one of interest, and the
(5.16). The second
is the average
involves

Here the subscript | refers to the first b
superscript O refers to the empty-lattice model of Egs. (5.15)and (
term on the right side of (5.17), which is the first-order correction. 15
value of the potential. The third term, giving the second-order correctl}?n'sme ‘
summing over all states n, k, except where these indices are equal to the

under investigation.

The N
v carly-Free-Electron Modes i
First we note that the first-order correction s equal to
1
O)y — = |,
WOV 1D = [V (o ete gy Y
s the average value of the potential over the enire jace, 1, ;
wfh;( and hence it 1S l_nenjel'y a constant. Its effect on the specyyy, 118 independent
¢ ‘r,npl)’ 10 displace 1t rigidly by a constant amount, without ca"l_of Fig. 5.10(c)
is sl of the energy spectrum. Since this term g using any change

’ F e oes ;
in the o us here, it will be set equal to zero, which can not lead to anything of

be accomplj
nterest omplished ifti
]hc zer0 €Nergy level. _ by shifting
e e must therefore consider the second-order correcyj

: , on i
¢ that the quantity <, k" V| 1,k can be shown to ::ml’;: (517). We
here both k and k’ are restricted to the first zone, That % 1hexc:em when
pled to the l k state by the perturbation are thos'e flonly.smes
as shown in Fig. 5.12. Yying directly

first asser
k’ = k. w
which are cou
above this state,

Fig. 5.12 Only those states lying directly above the state y'% in k-
it by the perturbation. i L gl

: T!ns assertion rest§ on the translational symmetry of the crystal potential
(x)." Furthermore, since the energy difference in the denominator of the third

tAn arbitrary potential V (x) can always be expanded as a Fourier series
Vx) =3, V,e™
where the ion i e
he summation is over all the allowed k’s. The Fourier coefficient V, is given by

V= (1/L) J.:V(x) e~ dx.

Butif p (x) i P

s : :
the aboye )Sun?r:;gdlc.' as is ghe case in a crystal, then only the values k = G contribute to
eXpansion on; that is, ¥, = 0 for k # G. A periodic potential therefore has the

V(x) =Yg Ve
in the numerator of (5.17) is the Fourier coefficient

It ca
" "5.'«‘,'22“ that the bracket
nce this bracket vanishes except for k' — k = G.

Vg
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S6
term in (5.17) increases rapidly as the band » rises :
i ; s the
from its coupling to band 2. We may therefore wri:ajor effect on band | iy
E,() = EOG) + — V=2l
EP() — EP(R) ° G.13)
where V_,,,, is the Fourier component of the potential, that is
I : s
Voreia = IJ‘V(x) etiQmax g
An explicit expression for E,(k) can be obtained b siaaes
Yy substitut
E{”(k) and E{’(k): namely E{’(k) = #*%k%2m, and EP(k) : 'hnzikthe ;allu;g for
= Lma) Ny

B:?l: ‘:_‘::e lfe‘loecjr:ni::/-:’ the'n the second band is obtained by translating that pg

¥ e lying in the interval — 2n/a < k < — = part
Fig. 5.10(b), and hence the above expression for ES”(k).] But this ‘» as seen jp
necessary, because if the potential is weak, then | V_,, | 2is vty emall :nr:‘otlhreally
ond term in (5.18) is negligibly small compared with the first. In other k.
E, (k) = E\”(k), and the effect of the lattice potential is negligible. A

There is, however, one point in k-space at which the above conclusion breaks
down: the point k = n/a at the zone edge. At this point the energies E”(k) and
E{"(k) are equal [recall that bands 1 and 2 touch there; see Fig. 5.10(c)], the de-
nominator of the perturbation term in (5.18) vanishes, and hence the perturbation
correction becomes very large. Since the above perturbation theory presumes the
smallness of the correction, it follows that this theory cannot hold true in the
neighborhood of the zone edge. In this neighborhood, one should instead invoke
the degenerate perturbation theory, in which both bands 1 and 2 are treated
simultaneously, and on an equal footing. The resulting energy values are (Ziman,

1963),
EL(k) = HEO®K) + EPK) + [(EP(K) - EV()* +4 Vo1 519)

i —i.e., band 2—near
here the pl n corresponds to the deformed upper band—i.e.,
he e a6 # fers to the deformed lower band—

the edge of the zone, and the minus sign re!

i.e., band 1. :

Now let us substitute the values of ( 3
E. (k) and E_ (k) in the neighborhood of the zone cdge. We ollata(l)nl;]:e;i[;:mu
shown in Fig. 5.11(a). In particular, the energy gap E, is equal t e i
E, (k) — E_(k) evaluated at the point k = nfa. Using (5.19), we re

(5.20)
E. T~ 2] V-—Zx/al'

That is, the energy gap is equal to twice the Fourier comf::'lz:
potential. In effect, band 1 has been depressed by an.am:) R eneriy 88
and band 2 has been raised by the same amount, leading to

by (5.20).

E{©(k) and EQ(k) into (5:19) and plot

t of the crystal

A
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same formula (5.19) may also be used to find ;
;h:,mer of the zone, at the intersection between b:::,:'?ydgap e
i EQ(k), E(k) by EP(k o i exepuatm
we now replace ES(K), E3 2 (k) and ES(k), respectively. We aleo
replace the potential term by V_4xsa- This leads to the splitting of bas;ds 2and 3,
as shown in Fig. 5.11(a), with an energy gapof 2| V_,,,,|. Obviously the p:occ.
dure can be used to ﬁ’nd both the splitting of the bands and the corresponding ga
at all appropriate points. =

In addition to the above results, two qualitative conclusions emerge from thy
analysis. First, the higher the band, the greater its width; this is evident from r:
ferring back to the empty lattice model in Fig. 5.10(a), since the energy there
increases as k*. Second, the higher the energy, the narrower the gap; this follows
from the fact that the gap is proportional to a certain Fourier component of the
crystal potential, but note that the order of the component increases as the energy
rises (from V_./, 10 V_suy, in our discussion above). Since the potential is
assumed to be well behaved, the components decrease rapidly as the order increases,
and this leads to a decrease in the energy gap. It follows therefore that, as We‘
move up the energy scale, the bands become wider and the gaps narrower; i.c.
the electron behaves more and more like a free particle. This agrees with the qualila:
tive picture drawn in Section 5.2.

Since the greatest effect of the crystal potential takes place near the points in
k-space at which two bands touch, let us examine the behavior there more closely.
If one applies the degenerate perturbation formula (5.17) to the splitting of bands
2 and 3 at the center of the zone, one finds that, for small k (k < w/a),

"2
Es(k) = Eg + | V_ynsal + m—akl' (5.21)
and
ﬁl
Ex) = By = | V-suia| = 5k, e
where the parameter o is given by
4E,
-t o
. E (523)
and £, = i
are vf" = "’(2ﬂ/_°)2/2m0 is the energy of point B in Fig. 5.10(c). These results
TY Interesting for several reasons.

a .

E)Eqkuzal(liz: (5-'2]) shows that, for an electron near the bottom of the third band,

which i simo_:'mg the ﬁrs? two terms on the right, since they are simply constants),

tlectron t, o dispersion relation of a frec electron. In other words, the
ere behaves like a free electron, with an effective mass m* given by

m* = mofa,
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which.is different from the free mass. Referring to (5.23)
mass mgmsq gs the energy gap E, increases. Such a,
and E, is familiar in the study of semiconductors,

b) Equati20n (Sl.22)'shows that, for an electron near the top of th

Eﬂ~ = k2, wh_:ch is l.uke a free electron, except for the surprisine f ,
¢ ective mass is negauve.' Such behavior is very unlike that of a frege T"t that 1
its cause lies, of course, in the crystal potential. The phend tencs ¢lectron, 3pq
effective mass near the top of the band is a frequent of'a negative

¥ ) : oce : 3
particularly in semiconductors, as we shall see later (Chapter z)rl'ence n solids,

one sees that ¢|

he effect;
relationship flective

between m*

second band

We have thus far confined ourselves to a one-dimension:
extend this treatment to two- and three-dimensional lattices in i
forward fashion. We find again, as expected, that starting with the e:l ls"]a lgl_n-
model, the “turning on" of the crystal potential leads to the creation [:)ty S
gaps. Furthermore, these gaps occur at the boundaries of the Brillouin zoneenergy

al lattice, but we ay

\A; THE ENERGY GAP AND THE BRAGG REFLECTION

In discussing the NFE model, we focused on energy values. But perturbation also
modifies state functions, and we shall now study this modification. If we apply
the per urbation theory to the one-dimensional empty lattice, we find that the
state function of the first band in Fig. 5.11(a) is given by

— 1/,$0) V—h/- (0) 524
'J’x.k '/’l.k + E(]O)(k) e E(zo)_(-k_) d’l,k: ( )
where—again because of the form of the potential and also the energy difference
in the denominator—the perturbation summation has beoen reduced to one term
only, involving the state function of the second band YL e L
The state functions ¥} and y$} refer to a ‘(fhr_egﬂlf)lfclron, tﬁtz,la ~w:ve
represents a wave traveling to the right, while Y5} ~ e y reprc:::i:l i
traveling to the left (note that | k| < nfa). The eﬂ'e.cl of the Iatt'lce' go t[! sl
to introduce a new left-traveling wave in addition to the inci cntl el
This new wave is generated by the scattering of the electron by the crystal P

: ©0) in (5.24) is
If k is not close to the zone edge, however, the coefficient of Yok 1N (52
negligible. That is,

(529)

ial are
The effects of the potcnflal ;

ached in Secuion >
rection (€™
that

a free electron.

eement with the conclusions re o
denominator Imn the ¢ ke
arge, which m¢

and the electron behaves like
negligible there, which is in agr

Near the zone edge, however, the energy de! g
in (5.24) becomes very small, and the perturbation
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5,24) becomes invalid. A_‘s stated in Section 5.6, o
Penurbation theory, in which the state fy o aeniuscithe

: nctions (0
on an equal footing. One finds that, at the zone edge 'ﬁ;;” and y{®

the form €
degenerate
are "catcd

(0)

| bt i
Vi) ="J5 [¥$oa(x) £ ¥Ea(x)] = J—i(e""”"i el (526

The function ¢,;(x)'~ cos (n/a)x, and hence the probabilit
el 2 ~ cos*(n/a)x. Such a state function distributes the electron so that it is
piled Pl’edominantly at the nucle'l (recall that the origin x = 0 is at the center of
an ion) [sc¢ Fig: 5.13], and since the potential is most negative there, this

Y is proportional to

Fig. 5.13 Spatial distributions of electrons described by the functions , and v_.

distribution has a low energy. The function W, (x) therefore corresponds to the

energy at the top of band 1, that is, point A, in Fig. 5.11(a).

belWl;zncg\netr.ast, the functiop ¢T(x) ~ sin m/ax, depositing its electron mostly

ERS lons (as shown in Fig. 5.13), corresponds to the bottom of band 2
8- 5.11(a), that is, point 4,. The gap arises, therefore, because of the two

diffe istributi
energ:: distributions for the same value k = n/a, the distributions having different

Serutinizin

g, k = g 8 (5.26) from the viewpoint of scattering, we see that at the zone

amplitude o, t’h ;l::‘cfgattcrmg is so strong that the reflected wave has the same
Y a Stan, g e, ent wave. .As found above3 the electron is represe_med thgre
Tesult of this jg ll:nato Sur‘!/ax or sin m/ax, very Un]lke a free particle. An interesting

* 7/, This is e electron, as a.stam':lmg wave, has a zero velocity at
Which we sha)) ¢ general result which is valid at all zone boundaries, and one

We haus seencoumer ofter} in the following sections.
Recalt from Se,c:'1 that the periodic potential causes strong scattering at k = n/a.
Lresult of the B iy 3_‘6 on lattice vibrations that this strong scattering arises as
diffracyeq is t ragg diffraction at the zone edge. In the present situation, the wave
¢ electron wave, whose wavelength is A = 2n/k.
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£XY 58
In higher-dimension lattices, the Bragg condition i ; jonal case: Iti
) i G s 3 ion is satisfy o.dimensional case: RLIS necessary to choose a suitabl ;
boundan_es of the Brillouin zone, as discussed in Section 2.6, and :: along 4 First the o:‘he choice is not unique, the following offers a reaso: iIIOCh function,
the creation of energy gaps along these boundaries, in agreement wi IS Tesults jp and while able form.
sions of the last section. ith the concjy, X
X) = =15 2, X ot
Wi N’“;};‘l dux - X)), (5.27)

\%ﬂ THE TIGHT-BINDING MODEL

In the tight-binding model, it is assumed that the crystal potential jg
is the same as saying that the ionic potentials are strong. It fcllo::[o
that when an electron is captured by an ion during its motion throug}spl

ummation extends over all the atoms in the lattice. i
ng, which wher ::;c: the position of the j™ atom. That is, X, = ja, wl:creT: Tscxcl):;rt?t?:e
therefore, X spcn The function ¢.(x — X;) is the atomic orbital centered around th:
the electron remains there for a long time before leaking, or tunnelin he lattjce, e it is large in the neighborhood of X, but. decays rapidly sway fromishis
ion [see Fig. 5.14(a), which also shows that the energy of the electron ii' 4t mexy - as shown in Fig. 5.14(b). By the time the neighboring site at X, (or
appreciably l}’(‘"” ) i reach ed, the function ¢,(x — X ) has decayed so much that it has {s;éome
zI:l; ;st neglisiblc- ln_ ot'her word;, there is o_nly a little overlap between neighboring
stomic orbitals. This IS the basic assumption of the TB model. The factor N'/2
*cluded in (5.27) to ensure _that the function ¥, is normalized to unity (if the
atomic orbital ¢, is so normalized).
Let us turn now to the properties of the function y,(x), as defined by (5.27),
First, it is necessary to ascertain that this function is a Bloch function, namely, that
it can be written in the form (5.3). This can be established by rewriting (5.27)

in the form

1 ikx N - ik(x-X,)
wlx) = yme Z e ke -X)g (x ~ X)),

Hige: i i 1 wh;re ‘it is now readily recognized that the factor defined by the summation is

periodic, with a period equal to the lattice constant a. Thus the function ¥(x)

has indeed the desired Bloch form, i.e., it describes a propagating electron wave,
as shown in Fig 5.14(c).

Note also that near the center of the j™ ion, the function ¥,(x) reduces to

Fig. 5.14 The tight-binding model. (a) The crystal potential. (b) The atomic wave
functions. (c) The corresponding Bloch function.

tial barrier]. During the capture interval, the elec- e BN W 4 i
its state function is essentially ¥i(x) b,(x D~ o i (5.28)
Most of the time the : :
evel- ::athl‘: the Bloch function is proportional to the atomic orbital. Thus in the
orbgit lofhood of the j™ ion, the crystal orbital behaves much like an atomic
al, in agreement with the basic physical assumption of the TB model.

lower than the top of the poten
tron orbits primarily around a single ion, i.e.,
that of an atomic orbital, uninfluenced by other atoms. i
electron is tightly bound to its own atom. The mathematical analysis t0 be d
oped must reflect this important fact. L
As we said in Section 5.6, the TB (tight-binding) model is primarily su! Theilunetio ! _ ‘
the description of low-lying narrow bands for which the shell radius is much small;r the Bloch theor:mw;(:ci t:er;fo\te i m_:thcm“d"lc"" ';qu'fm;"liso:
than the lattice constant. Here the atomic orbital is modified 9nly Shi}','ﬂy b:;;: Suitable crystal orbital. 1t :Iiuas;cu'::;u:;‘:l&nc:]rc:l‘:te tﬁen;ge:g; 2':, th:sbil:) 4
ethcretopimiEs S exampleithe3d U P trapsmt;n rcnawm _ Theenergy of the electron described b ¥, is given accordingto quantum mech-
Let us begin, then, with an atomic orbital, ¢,(x), whose energy in a IT¢ anics, by y Yy 15 given,

i olid-
is E,. We wish to examine the effects of the presence of other atoms in the s

[bital (for the atomic shell of interest)

The index v characterizes the atomic Ol (5.29)

E(k) = (ol H 1Y,
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sy
where H is the Hamiltoni

yinin ian of the electron'. Substituting for v, fr

kITom (599,

-21),

1
E(k) = — Y e*¥s=Xp .
5 ,Z, Cdulx = X )| H ] dy(x - X, (
530)
where the double summation over j j'
r Jj and j' extends over al .
Note that each term in the summation is a function oaf It::c;toms " the lanyicy
and not of X; and X individually. Therefore, for each pa t'_m’l‘ence Xy
the sum over j yields the same result, and since j' can take 7\1 rd!cular Shicetor 7
obtains N equal terms, which thus leads to ifferent values, op,

EGR) iz
] Ay
j=z:}4/1e < ¢,,(X)| H| ¢v(x e xj))- (5:“)
where we have arbitrarily put X; = 0 in (5.30). B: A
; -30). spl ;
the others, one may write the atJ)ove expression asy PULOME (e term iy from

E(k) = ¢, () | H| $,(x)> + T e™ i(p(x) | H| ¢,(x — X))
7 i (5.3
The first term gives the energy the electron would have if i i ;
localized around the atom j = 0, while the second te::me lfc;;t;izr:;: 3:1‘:11“““]}'
electron tunneling to the various other atoms. The terms in the sun'\matsi::)“he
expected to be appreciable only for nearest neighbors—thatis, j= 1 and j = i?f
because as j increases beyond that point, the overlap between the corresponding
functions and the state function at the origin becomes negligible (Fig. 5.14b).
Note also that, since the property of electron delocalization is included entirely
in the second term of (5.32), it is this term which is responsible for the band
structure, and as such is of particular interest to us here.
To proceed with the evaluation of E(k), according to (5.32), we need to examine
the Hamiltonian H more closely. The expression for this quantity is given by
h? 4 53
"’_2Tn'odx2+v(x)’ .6

where V(x) is the crystal potential. Writing this potential as a sum of atomi¢
potentials, one has

.34
Vix) = Yolx — X)) M
i
: total energy
1 The Hamiltonian # is simply the quantum operator Wh;r::h ::?:f::;éticghfreprm““
of the particle. Thus H = — (h%[2my) V2 + V(r), wherethefirst - ) for the

i ression (0. 5
kinetic energy and the second term potential 4cnerlgy. The rt;);}; o of the ! gyt
energy is very plausible, since the term on the right is the ave

quantum mechanics.

e
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is to evaluate the first term in Eq. (5.32), we shall find it convenient to

ing th
[n using m of two terms

into 3 SU
split v(x) into 2

V(x) = v(x) + V'(x), (5.35)

. ic potential due to the atom igi
o(x) is the atomic p ¢ at the origin and V'(x) i
;,::r[ca all the other atoms. These potentials are plotted in Figs. S.IS(aSX:;::t(I;t
j=-1 j=0 j=1
vﬁ [
j=—1 j=0 j=1

VTV

Fig. 5.15 The splitting of the c_rystal potential into (a) an atomic potential and (b) the
remainder of the crystal potential.

@

respectively. Note in particular that V'(x) is small in the neighborhood of the
origin. The first term in (5.32) may now be written as

ht d?
[ St u(x)} ¢.(x)>

+ {0V $.(x)).  (5.36)

(I H|$,(x) = <¢v(X)

The first term on the right is equal to E,. the atomic energy, since the operator
involved is the Hamiltonian for a frec atom. The second term is an integral which
can be evaluated, and will be denoted by the constant —B. Explicitly,

B=- I(#I(X) V' (x)d.(x)dx. (537)

where the minus sign is introduced so that B is a positive number.! Nolte that §
lsha small j]uanmy, since the function ¢,(x) is appreciable only near the origin,
whereas V'(x) is small there. Collecting the two terms above, we have

(O H 90 = E, = B (5.38)

T —
he integral, in (5.37) is negative because V*(x) is negative (Fig. 5.15b).
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Let us now turn to the interaction term, i.e., the sy
term involving interaction with the nearest neighbor

MmMation jp (5.32) i
integral which may be written as .

MKy involyg, a:
B g
(P x) | H|d(x — a)) = {p,(x)| - T

Mo dx?

+o(x = a)|$,(x - a)> + ($,(x) | V'(x — 4
v = Adux - q
v - (539
X = a)), which ;
X ~ 0), being comet
second term o: tcl:: ::hdl

The first term on the l‘ighl is equal to Ev<¢v(x) | ¢ (
negligible quantity, since the two functions ¢,(x) and ¢ {
at two different atoms, do not overlap appreciably. The
of (5.39) is a constant which we shall call -y, that s,

y=- fdﬁ(:r) V(x — a) ¢o(x — a)dx. e
-40)

Note that y, though small, is still nonvanishing becau A ;
near the origin, that is, x = 0 (although not atgx = a).se_rvhe(’;amz:‘seapi’.mlable
the overlap integral, since it is dependent on the overlap between o,-b-,tr]y i
at two neighboring atoms. als centered

The integral arising from the term j = —1 in the sum in (5.32), which is ¢
to the atom on the left side of the origin, yields the same result as (5.39) becau::
the atomic functions are symmetric.

Substituting the above results into (5.32), and restricting the sum to nearest
neighbors only, one finds

1 a
Ekk)=E, - 8- P efkX, (541)
e
which may thus be written as

E(k) = E, — B — 2ycos ka. (542)

This is the expression we have been seeking. It gives band energy as a function of
k in terms of well-defined parameters which we can evaluate from our knowledge

of atomic energy and atomic orbitals. .
Equation (5.42) may be rewritten more conveniently as

k
E(k) = Eo + dysin® (-21) (549
where "
Eo=Eu~'ﬁ—2y. (54)
d to the ﬁr§l

d versus k in Fig. 5.16, where k is restricte

The energy E(k) is plotte i agtpement with property (

zone [although E(k) is obviously periodic i
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d, that the original i
.5 4]. Wesee,as expecte: ginal atomic level E, has broadened
of Sectio” jr ) pand. The bottom of the band, located at k = 0, is equal to E,.

en 4
Lt is equal 10 &
widt Etk)

[iin s o e

|
3
[N
M
3
B

Fig. 5.16 The dispersion curve in the tight-binding model.

Note that the bottom of the band E, is lower than the atomic energy E,,
which is to be expected, since one effect of the presence of the other atom is to
depress the potential throughout the system (refer to Fig. 5.14a). In addition to
E,, the electron has an amount of energy given by the second term in (5.43). This
is a kinetic energy, arising from the fact that the electron is now able to move
through the crystal.

Note also that the bandwidth, 4y, is proportional to the overlap integral.
This is reasonable, because, as we saw in Section 5.2, the greater the overlap the
stronger the interaction, and consequently the wider the band.

When the electron is near the bottom of the band, where k is small, one may
make the approximation sin (ka/2) ~ ka/2, and hence

E(k) - Eq = ya®k?, (5.45)

which is ofArhe same form as the dispersion relation of a free electron,. An electron
In that region of k-space behaves like a free electron with an effective mass

2

* = —

L (5:46)
Iti .

I,-sssie:?n:t;tivt;" effective mass is inversely proportional to the overlap integral y.
i lunnzl r;asonable, since thF greater the overlap the easier it is fqr the
inertia (or mass) ;0']:1 one atomic site to another, and hence the smaller is the
mass, ie., a gly ol ': e electron. Converscly: a small overlap leads to a large
SUpposed to pe ssnf!; ,°|¢c1rpn. of course, in the TB model, the overlap is

Ote, howev. all, implying a large effective mass.
behavigr., If er, that an electron near the top of the band shows unusual
We define k' = nfa — k, and expand the energy E(k) near the

ele
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1]
maximum point, using (5.43), we arrive at
2
a
E(k') - Emn e kll,

(9] 57 o
which shows that the electron behaves like a particle of negarive effective s
2 N

Mo sk
a'y (5.48)

This, you recall, is in agreement with the results obtained on the basis of the NFE
model. ;

The above treatment can be extended to three dimensions in a Straighy
forward manner. Thus for a sc lattice, the band energy is given by

E(k) = Ep + 4y [sin’(k—;a-) + sin’(%) + sin’(’-"Ta)]. (5.49)

where Ej is the energy at the bottom of the band, The energy contours for this
band, in the k, — k, plane, are shown in Fig. 5.17(a), and the dispersion curves
along the [100] and [111] directions are shown in Fig. 5.17(b). The bottom of the
band is at the origin k = 0, and the electron there behaves as a free particle with an
effective mass given by (5.46). The top of the band is located at the corner of the
zone along the [111] direction, that is, at [n/a, x/a, n/a]; the electron there has a
negative effective mass given by (5.48). The width of the band is equal to 12y.

Vin/a 0 */a

(a) (®)

Fig. 5.17 (2) Energy contours for an sc lattice in the tight-binding model. (b) Dispersion
curves along the [100] and [111] directions for an sc lattice in the TB model.

In this treatment of the TB model, we have seen how an atomic levc_l broaders
into a band as a result of the interaction between atoms in the solid. In this mﬂ“n:r;
each atomic level leads to its own corresponding band, and each band reflects
character of the atomic level from which it has originated.
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Jusions We sec that both the NFE and TB models lead to the same

o coné uults, although the models start from opposite points of view. The
qualilame tC:“s arrived at in both models are: (a) Energy gaps appear at zone
ﬂncipal, res (b) An electron near the bottom of the band behaves like a free
p positive effective mass. (c) An elgctron near the top of the band
e a free particle with a negative effective mass.

ALCULATIONS OF ENERGY BANDS
c

| few sections We have discussed some methods of calculating energy
In the laSH owever, these methods—the NFE and TB models—are too crude
pands. ful in calculations of actual bands which are to be compared with
to be e | results. In this section we shall consider therefore some of the com-
e e"mﬂ:ads employed in calculations of actual bands. Because this subject is
mon met Od one, Tequiring a ‘considerable background in quantum mechanics,
" advanc:;ﬂi::,ul:)us attention to almost endless mathematical details, our discus-
2 well Tls be brief, primarily qualitative, and somewhat superficial. We shall
sion mcless try to give the reader a glimpse of this fundamental subject in the hope
?::: rhe may pursue it further, if he so desires, by referring to books listed in the
pibliography at the end of the chapter. ;
Several different schemes for calculating energy bands have been used. Let
us now discuss them individually.

The cellular method

The cellular method was the earliest method employed in band calculations (Wigner
and Seitz, 1935). It was applied with success to the alkali metals, particularly
Na and K; we shall use Na as an example.

The Schrodinger equation whose solution we seek is

2
[— —2"— v+ V(r)] Vi = E®) ¥, (5.50)
Mo
::l;riv(r) isthe crystal potential and y, the Bloch function. Here we are interested
analyl?c;Ee 3waand. It is at once evident that this equation cannot be solved
Wheny\.v ¢ must therefore use an approximation proce_dure. '

alom is Ceme l:!se the ccl'lular method, we divide the crystal into unit cells; each

3 the Wign::es at the middle of its cell, as shown in Fig. 5.18. Such a cell, known

o the Tines c‘ eitz (WS) cell, is constructed by drawing bisecting planes normal

volume enclo°"§°°""8 an atom 4, say, to its neighbors, and “picking out” the
U may no::' . by these planes. (The procedure for constructing the WS ce!l,

%-space) For }*lls analogous to that used in constructing the Brillouin zone in
odecaheqrq, 2, “{hlch has a bee structure, the WS cell has the shape of a regular

N (similar to Fig, 5.8b, but in real space).
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S9
In order to s
olve (5.50), we now assu
y OO0, me that
;:\m.culm? cell, say 4, is influenced by the potential ofl:‘he F‘eclf STt
s : }:ons u-al other cells have a negligible effect on the electro: i
es i i :

e cells is ocgupxed. on the average, by another congd n?eu 4 us nly.
tends to screen the ion, thereby reducing i i e dont ik
ihe'fi § ; N Y cing its potential drast; CCtron Whi

e unct!onlw. satisfies the Bloch form, it is necessary th; ically. To ensyr, S
—be periodic, that is, u, has the same points on oppo:itt: ';_‘-Where v S
ac

points P, and P, in Fig. 5.18(a). es of th: ;lle":'"u
* S8,

n in
cell g

®)

Fig. 5.18 (a) The WS cell. (b) The wave function
. . g t
versus the radial distance, in units of the Bohr rafi%: S3F PoHgmof the Y band in Na

Thc procedure is now clear_ in principle: We attempt to solve (5.50)inasi
cell, using for V(r) the potential of a free ion, which can be found from lngk
physics. In Na, for instance, V (r) is the potential of the ion core Na* [‘ailso m}Ic
very difficult, however, to impose the requirements of periodicity on tl;e functsi:;I
for the actual shape of the cell (the truncated octahedron), and to overcome 1hir;
hurdle Wigner and Seitz replaced the cell by a WS sphere of the same volume as
the actual cell, i.c., one employs 2 W S sphere. Using these simplifying assumptions
concerning the potential and the periodic conditions, one then solves the
Schrodinger equation numerically, since an analytical solution cannot usually
be found. The resulting wave function ¥, at the bottom of the band, k =0, is
shown in Fig. 5.18(b). The wave functions at other values of k near the bottom of
the band may then be approximated by

1 4
Yi = e Vo (531

which has the Bloch form. !
The procedure is also capable of yielding the energy E(lf).
of the bottom of the band is obtained from the same calculation

The energy Eo
s which give Vo

-

Calculations of Energy Bands
v 6

crgy 8t 80Y other point k is obtained by using

hz
Ek) = <Wk| T v 4 V(r)|;j,k>’

ve function W is substituted from (5.5 :

easau:c 4 by Wigner and Seitz to evalugte ltzme I;\:e::;"gey found in this

re in satisfaclrofy 38\‘3?’:‘;“' with le)tperiment. SRR, madihe
orthy feature of these resu ts is the sl

1e¥hc w);ve function oscillates at the ion c}:z?bzrt ‘::c:l ave function in

essentially a constant. This constancy of theomme the oI
most 90% of the cell volume. Thus the wave fum:ti<:‘::a;ehmm“'0 5
ave, as seen from (5.51), over most of the cell, and hence over ;;v‘es[hke
Looking at this in terms of the potential, we see that where the funcl?ortlh'e
Jane Waves the potennal r.nust be a constant. Thus the effective otcnl‘lsl
& ? 1 the electron is essentially a constant, except in the region at thepiOn Cc::c
. Viewing the motifm of th'e electron in the crystgl as a whole, we conclude

e clectron moves in a region of constant potential throughout most of the
ly at the cores themselves does the electron experience any appreciable
This surprising result explains why the conduction electrons in Na, for
txample, MY be regar_deQ as ess;ptiall_y free electrons. Mathematically, it‘is a
consequence of the periodic conditions imposed on the wave function in the cell,
and this is particularly apparent when one realizes that the wave function for the
3selectronin @ free Na atom is very unlike _‘l‘o outside the ion core. The flatness of
Jo is thus due to the imposujon of the periodic conditions, and not to any special
property of the ionic polenual.f The effect of the periodic condition is to cancel
out the ionic potential outside the core, and thus render the potential a constant.
We shall find this result very useful in the development of other methods of band
calculation.

Despite its usefulness, the cellular method is greatly oversimplified, and is not
currently much in use. One of its chief disadvantages is that when one replaces
the WS cell by a sphere, one ignores the crystal structure entirely. All anisotropic
effects, for instance, are completely masked out.

gad the &

(5.52)

e no

that
crystal ;on
poten tial.

)’I@ugmemed-plane wave (APW) method

The APW method (Slater, 1937) uses the results of the cellular method, but is so
formulated as to avoid its shortcomings. Since the effective crystal potential was
found to be constant in most of the open spaces between the cores, the APW
method begins by assuming such a potential (Fig. 5.19), which is referred to as the

:‘3‘: boundary conditions require that the derivative of the function Yo vanish at the
ce of the WS sphere (why?). Thus the function is flat near the surface of this sphere,
as shown in Fig. 5.18(b).
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Fig. 5.19 The potential and wave function in the APW meth,
ethod.

muffin-tin pou:mtial. The potential is that of a free ion at th
constant outside the core. The wave function for th $ie gore,
to be € wave vector k

nd is strietly
is now taken

1 eilvr
we={Virf > r>u,
: (5.3
atomic function, r<r :

where r, is the core radius. Outside the ;
S ) . core the function i
the potential is constant there. Inside the core melsffnﬂ?: e because
: : . n is atom.l;
alli‘d 1 fovunffi by solving the appropriate free-atom Schrédinger equation Ahlls:'
the atointllt‘: unc;xon n; (5.53) is chosen such that it joins continuously to the plan;
wave at the su i Tihic
= rface of the sphere forming the core; this is the boundary condition
The-functior? w, does not have the Bloch form, but this can be remedied
by forming the linear combination
Y= an\uc Wyx+Gr (5.54)
where the sum is over the reciprocal lattice vectors, which has the proper form.
The coefficients dy s aT¢ determined by requiring that , minimize the energy.!
In practice the series in (5.54) converges quite rapidly, and only four or five terms—
or even less—suffice to give the desired accuracy. : '
The APW method is 2 sound one for calculating the b:{nd structure I11n
metals, and has been used 2 great deal in the past few years. It ‘“°°’?°'m5l €
essential features of the problem in & straightforward and natural fashion.

nd struc

pseudopotential method . e
tate physicists for calculating i

Yet another method popular among solid-s ySiCIStS ROT L od by the
ture in solids is the pseudopotential method, which is distinguished bY

bl Pl A : Jow as PO
+ The “best” linear combination (5.54) is that which makes the energy as

sible:

%

-
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function is chosen. We seek i
Cghithe wave a function whi i ;
!n Vg: he €Ores but runs smoothly as a p_lane wave in the re;::i::mllates rapidly
mslcc of the ws cell. ‘S\.JCh a function was chosen in the f\f]:‘); the open
:Pc:m Jing t0 (5.53), but this is not the only choice possible. Suppose we ta?lhOd

(5

e (5.59)

:e a plane wave and v; an atomic functi
wheté m;hl: atgmic shells which are occupied_nc;?’:' ex’:::p]s:ﬂj over i extends
the 1s, 25, and 2p shells. The coefficients g, are ch;;e"n Na,hthe sum
fnction Wi fe'prescnling ? .3s electron, is orthogonal to the core sf‘\lxzctli};:‘ f,hf
By requiring this orthogonality, we ensare that the 3s electron, when at the corl'e
does not occupy thc‘olhcr alomic orbitals already occupied. Thus we avoid violat:
ing the pauli exclusion principle.
The function Wi has the features we are seeking: Away from the core, the atomi

functions Vi 21 negligible, and thus wy = ¢y, plane wave. At the Core ‘The at(c)»ﬁl'c
functions 8¢ appreciable; and act so as to induce rapid oscillations, z;s shown 11;

Fig. 5:20.

L

Wave function Pseudofunction

Vir)

Potential
Pseudopotential

(a) (®

potential and the corresponding

Fig, 520 The pseudopotential concept. (a) The actual
pseudopotential and

wave function, as seen b i
: y the el r
pseudofunction. i i 3 o

If : g
one now substitutes w, into the Schrédinger equation

[

—
t Two functi
eI b ard i, e saidd be orthogonal if the integral Ju* Y2 d’r = O
in the variouy, orthogonality is very useful in quantum mechanics. The atomic functions
s atomic shells are all mutually orthogonal.

h?
2 2 "
Sto V:+ V]w.— EX)wy,

(5.56)
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Mﬂlhll:ma g

and rearran S10
ges th
€ terms, one finds that the equation may be
Written
N the f,
Orm

Rl
L Wy V'] b = EQ) 6,
where (5.57)
e B ‘L‘.‘-bl o V) o).
.Thcse results are very interesting: s (5'58)
is given by V, while (5.58) shgwsEt(}\L:t‘:/)? i(:-j'l) show
term on the right of (5.58) tends to cancel the f-‘T et
crystal potential by the atomic functions is usu ;1“ -
very weak potential ¥’. This is known as the 9 ZaPPreciable,
the wave function as seen from (5.57) is alm R, S
called the pseudofunction. pava
The pseudopotential and pseud i ;
Fig. 5.20(5). Note that the potential s o are llusirated graphical |
at the ion core is entirely removed. Correspond’i?]nl b e elan (e Sinsularil(n
wave function have been erased, so that thereisa S:O);ﬂtlhc] o gslagin ‘h:
Now we can understand one point which has trofbian:wave-“keﬁmc“""‘
why the electrons in Na, for instance, seem to behave cf us for some time:
the fact that the crystal potential is very strong at theas‘ SCHBI el
see that, when the exclusion principle is properly lakl::lc‘ cores. Now we
effective potential is indeed quite weak. The free-particle bcll::: ac;:oum, e
to be an empirical fact, is now borne out by quantum-mcchaniclac;r,carngi tgken
The explanation of this basic paradox is one of the major achievcme:: 2:1‘0:11:.
pscudopot.cntial method. This method has also been used to calculate ban:
structure in many metals and semiconductors (Be, Na, K, Ge, Si, etc.) with
considerable success.
The APW and pseudopotential methods, as well as other related systems,
require much numerical work which can feasibly be carried out only by modern
electronic computers. It often takes a whole year or more to develop the
necessary program and perform the calculations for one substance on 2 Jarge com-

puter!

/540 METALS, INSULATORS, AND SEMICONDUCTORS
A metal—or

Solids are divided into tWoO major classes: Meralsﬂand ins;/aru::: pplicain o
1 idi i i unde
conductor—is a solid in which an electric current flows e

< 2 i es
an electric field. By contrast, application ‘of an ele_ctr]c ﬁe‘h:u .prog:lcw“n e
in an insulator. There is a simple criterion for distinguishing

ie criteri the following
classes on the basis of the energy-band theory: T‘hls criterion rests or; s b
statement: A band which is completely full carrie

s that the effe
han V| pe
m. This ¢

; Clive DPotentjy|
ause the Seconq
ancellatiop of the
often leading tog

hee V' s g
plane wave, given by ¢, anq
t] 1§

s no electric curre

-
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tric field. 1t follows ther, :
,,reit"'” Y, sg::.lzlch the{ands are partially :ig:;itel:jat ;hsohd bchaves as a metal
or‘lly ¥ i plied later (Section 5.13), but we shall acc.cpt ite f(p;ll"ol(;lrc(:r e s
will B¢ ned fact- ly this statement to Na, f i
oW BPP)’ 1 ent tO INa, for exam 1 H

: s;:e all fully occupied, they do not comribureletlo ?ﬂzczu?:: nc\;/ i
l:.’ercf'ore concern O,“l'selves only with the topmost occupied band (.hc elmay
{ In Na, this is the 3s band. As we saw in Section 5.5 tl;is bi v:enre
aa;o;nm" date 2N. elgclfOﬂSI‘ where N, is the total number of prh;\itivc u:i: o:l?sn
Now in N&s a Bravais b<:c‘r :ttu;..c, each cell has one atom, which contributes o,,;
N jence (oF 15) electron. Therclore the total number of valence electrons is N

lectrons Occupy the band, only half of it is filled, as shown in Fi;

and a8 these € ! :
521(). Thus sodium behaves like a metal because its valence band is only

purtally filled

/2 E

S

© @

® ®)

Fig.5.21 The distribution of electrons in the bands of (a) a m i
: etal, (b) an lator,
(¢) a semiconductor, and (d) a semimetal. > ) ey

also':l:alsslnlljxlar fashion, we conclude that the other alkalis, Li, K, etc., are
partially full C_(Iiiuse their valence bands—the 25,_48. ete., respectively—are only
e Thu.s ! Z noble metals, Cu, Ag, Au, are hkgwnse conductors for the same
cellin sires sltn u the valer:ncc band (the 4s band) is only half full, because each
i eXan.‘rulcture contributes only one valence electron.
10p band origi ple of a good insulator, we mention diamond (ca;bon). Here the
A8, whichg“"ates from a hybridization of the 2s and 2p atomic states (Section
these bands aslves rise to two bands split by an energy gap (F:g.'5‘2lb.) Since
each of hege Pl;se fromsand p states, and since the unit cell hgrecgnlams two atoms,
contribute: ands can accommodate 8N, electrons. Now in diamond each atom
s 4 electrons, resulting in 8 valence clectrons per cell. Thus the
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S0

valence band here is com
pletely full, an .
above.' y d the substance is an insulator,
v s as g
There are substances which fall in an intermediate positi o
ition be;

g Al i bR e e

v electrons are readily excitable th o
the latter band. Both bands become only partiall ﬁ“el’mally LI forme
the electric condition. Such a substance is known sutiae a'?d both cOmrihm: [(o
are Si and Ge, in which the gaps are about | and 0 'zll 13 Semlm"-dumr' E"a’“b'eo
the gap in diamond is about 7 eV. Roughly spea;kin < FEspenivEly iy Comras\s
semiconductor at room temperature whenever the gag, o sl“bstance behaves asa'

The conductivity of a typical semiconductor is verg sl.:n elsls o
a metal, but it is still many orders of magnitude larger th:n ‘chompand TO that of
It is justifiable, therefore, to classify semiconductors as a new a1l oftan Gl
although they are, strictly speaking, insulators at very low 1emc ass of substance,

In some substances the gap vanishes entirely, or the two g:;zlures.
slightly, and we speak of semimetals (Fig. 5.21d). The S csee el
but other such substances are As, Sb, and white Sn. FANIEE Eiby

An interesting problem is presented in this connection by the divalent ele-
ments, for qxample. Be, Mg, Zn, etc. For instance, Be crystallizes in the hep
structure, with one atom per cell. Since there are two valence electrons per cell
the 2s band should completely fill up, resulting in an insulator. In fact, however:
Be is a metal—although a poor one, in that its conductivity is small. The reason
for the apparent paradox is that the 2s and 2p bands in Be overlap somewhat,
so that electrons are transferred from the former to the latter, resulting in
incompletely filled bands, and hence a metal. The same condition accounts for the
metallicity of Mg, Ca, Zn, and other divalent metals.

A substance in which the number of valence electrons per unit cell is odd is
necessarily a metal, since it takes an even number of electrons 0 ﬁIlAa band
completely. But when the number is even, the substance may be either an
insulator or a metal, depending on whether the bands are disparate of 0%

lapping.

dt‘,N““ Metals
imMediayely

ial i it i \mospheric

t The case of hydrogen is of special interest. Allhouglln ‘sl'?;e%\:z gﬂe‘naisan iﬁsulz-
pressure, hydrogen solidifies at high pressure. But the famllharﬁslo id hy
tor, having two atoms per unit cell, which causes the complete B rosen b1 e
predicts, however, that at very high pressure (z; megabars), s 0
a crystal structure (ransformation anu::l a concomi e
experimenters are currently attemptng to observe t II" o
successes have been reported, but definitive results argnséln e

i o transt |
Even diamond has been repprled to underBA I Shase [ransforma"f’“ 10 ab'lhc
pressure (= 1.5 megabars). Simultaneously 2 structu ek b e caused b
centered tetragonal structure occurs. The decrease in the la
pressure is about 17%.

tant change to @ me:
formation, am B
the time of 4

rallic st at Mg
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o1 DENSITY OF STATES

The density of states for °'°_°"?ns in a band yields the number of states in a
ain enerey range. This function is important in electronic processes
.

-ylarly iD transport phenomena. When we denote th R
: ;:lc'zn by g(E). it is defined by the relation e density-of-states
u

g(E) dE = number of electron states per unit volume in the energy range
(E.E + dE). (5.59)

This definition of g(E) is analogous to that of the phonon density of states g(w)
so our discussion here para!lels that presented in connection with g(w). (Se;
Sestons 3.3 ad 37; partieulery S0 I evaluate g(E) one applies the
definition (5.59): One draws a shell in k-space whose inner and outer surfaces are
determined by the energy contours E(k) = E and E(K) = E + dE, respectively
ssshown in Fig. 5.2 The number of allowed k values lying inside this shell then
gives the number of states which, when divided by the thickness of the shell dE,
yields the desired function g(E).
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Fig. 5.22 Concentric shells in k-space used to evaluate the density of states g(E).

and l:\'s evident that g(E) is intimately related to the shape of the energy contours,

it e;\ce the band structure. The complexities of this structure are rr:ﬁecled

b ¢ form taken by g(E). Let us first evaluate g(E) for the case in which the
spersion relation for electron energy has the standard form

2

=
=
»

E= (5.60)
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